Package 'MetaboAnalystR'

Title: An R Package for Comprehensive Analysis of Metabolomics Data
Description: This package contains the R functions and libraries underlying the popular MetaboAnalyst web server, including 500 functions for data processing, normalization, statistical analysis, metabolite set enrichment analysis, metabolic pathway analysis, and biomarker analysis. The package is synchronized with the web server. After installing and loading the package, users will be able to reproduce the same results from their local computers using the corresponding R command history downloaded from MetaboAnalyst, to achieve maximum flexibility and reproducibility.
Authors: Jianguo Xia [aut, cre], Jasmine Chong [aut], Zhiqiang Pang [aut]
Maintainer: Zhiqiang Pang <[email protected]>
License: MIT + file LICENSE
Version: 4.0.0
Built: 2025-04-01 04:27:04 UTC
Source: https://github.com/xia-lab/MetaboAnalystR

Help Index


Calculate ROC performance with CV An internal function called by PerformCV.test

Description

Calculate ROC performance with CV

Usage

.do.CVTest.LRmodel(data.in, fmla.in, kfold = 10, run.stepwise = FALSE)

Arguments

data.in

Input matrix of data

fmla.in

Input for generalized linear model

kfold

Numeric

run.stepwise

Logistic Regression

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Read RDS files from the internet

Description

Function downloads the required file and reads it only if not already in working directory. Need to specify the file URL and the destfile.

Usage

.get.my.lib(filenm, sub.dir = NULL)

Arguments

filenm

Input the name of the file to download

sub.dir

sub.dir


Read data table

Description

Function to read in a data table. First, it will try to use fread, however, it has issues with some windows 10 files. In such case, use the slower read.table method.

Usage

.readDataTable(fileName, save.copy = TRUE)

Arguments

fileName

Input filename

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Adds an error message

Description

The error message will be printed in all cases. Used in higher functions.

Usage

AddErrMsg(msg)

Arguments

msg

Error message to print


Lipid analysis pipeliner

Description

Lipid analysis pipeliner

Usage

analyze.lipids(inFile, iso = "y")

Arguments

inFile

Input the file to read in

iso

Default is set to "y"

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Perform ANOVA analysis

Description

ANOVA analysis

Usage

ANOVA.Anal(mSetObj=NA, nonpar=FALSE, thresh=0.05, all_results=FALSE)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

nonpar

Logical, use a non-parametric test (T) or not (F)

thresh

Numeric, from 0 to 1, indicate the p-value threshold

all_results

Logical, if TRUE, it will output the ANOVA results for all compounds

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Perform Two-way ANOVA

Description

Perform Two-way ANOVA

Usage

ANOVA2.Anal(mSetObj=NA, thresh=0.05, p.cor="fdr", 
type="time0")

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

thresh

Input the p-value threshold

p.cor

Select method for p-value correction, bonferroni, holm or fdr

type

Select b to perform between-subjects ANOVA, and w for within-subjects ANOVA

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


ANOVA

Description

Perform anova and only return p values and MSres (for Fisher's LSD)

Usage

aof(x, cls)

Arguments

x

Input the data to perform ANOVA

cls

Input class labels

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Perform Two-way ANOVA

Description

Perform Two-way ANOVA Perform repeated measure one-way anova

Usage

aov.1wayrep(x)

Arguments

x

Input the data

time.fac

Input the time factor

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Perform Two-way ANOVA

Description

Perform Two-way ANOVA Perform two-way anova

Usage

aov.2way(x)

Arguments

x

Input data to perform 2-way ANOVA

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Perform Two-way ANOVA

Description

Perform Two-way ANOVA Perform within-subjects anova

Usage

aov.mixed(x)

Arguments

x

Input the data

time.fac

Input the time factor

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Function to perform ASCA

Description

Perform ASCA

Usage

ASCAfun.res(X, Fac)

Arguments

X

Input list of compounds

Fac

Numeric McGill University, Canada License: GNU GPL (>= 2)

Author(s)

Jeff Xia [email protected]


Function to perform ASCA Adapted from online R script with performance tuning

Description

Perform ASCA

Usage

ASCAfun1(X, Design, Fac)

Arguments

X

Numeric, number of compounds

Design

Number of levels in the factor

Fac

Numeric, the factor

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Function to perform ASCA

Description

Perform ASCA

Usage

ASCAfun2(X, Desa, Desb, Fac)

Arguments

X

Numeric, number of compounds

Desa

Number of levels in the factor TIME

Desb

Number of levels in the other factor

Fac

Numeric, the factor

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Calculate Concentration ISO

Description

Assuming independent random distribution of FA, the most probable frequency will be the product of the each component. Note: the data is concentration, we need to get frequncies - percentage w.r.t the total nmol. the result is the saved as separate files for each lipid class data for each FA class, first col is sample name

Usage

calculateConcISO(dat, cls.name, cls.num, min.file, prob.file)

Arguments

dat

Input the data

cls.name

Input the class names

cls.num

Input the number of classes

min.file

Input the min file

prob.file

Input the prob file

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Calculates feature importance

Description

Perform calculation of feature importance (AUC, p value, fold change)

Usage

CalculateFeatureRanking(mSetObj=NA, clust.num=5)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

clust.num

Numeric, input the number of clusters for cluster-analysis

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Quantitative enrichment analysis with globaltest

Description

Various enrichment analysis algorithms

Usage

CalculateGlobalTestScore(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Over-representation analysis using hypergeometric tests

Description

Over-representation analysis using hypergeometric tests The probability is calculated from obtaining equal or higher number of hits using 1-phyper. Since phyper is a cumulative probability, to get P(X>=hit.num) => P(X>(hit.num-1))

Usage

CalculateHyperScore(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Calculate the Important Variable Cutoff

Description

This function calculates the all important features based on a specfic cutoff.

Usage

CalculateImpVarCutoff(mSetObj, spe.thresh, lev.thresh)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

spe.thresh

alpha threshold, less is better, default less than 5 percentile based chi-square note: spe and leverage are vectors, not a single value, but a list to store the result note: the last model is Model.res, no spe Calculate leverage cutoff based on permutation Calculate the reference distribution of leverages note: leverage.perm is a list with each member in a 3 column matrix

lev.thresh

leverage threshold, the higher better, default more than 95 percentile of permuted leverage

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Calculate ORA score

Description

Calculate the over representation analysis score

Usage

CalculateOraScore(mSetObj=NA, nodeImp, method)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

nodeImp

Indicate the pathway topology analysis, "rbc" for relative-betweeness centrality, and "dgr" for out-degree centrality.

method

is "fisher" or "hyperg"

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Calculate Pairwise Differences

Description

Mat are log normalized, diff will be ratio. Used in higher functions.

Usage

CalculatePairwiseDiff(mat)

Arguments

mat

Input matrix of data to calculate pair-wise differences.

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Calculate quantitative enrichment score

Description

Calculate quantitative enrichment score

Usage

CalculateQeaScore(mSetObj=NA, nodeImp, method)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

nodeImp

Indicate the pathway topology analysis, "rbc" for relative-betweeness centrality, and "dgr" for out-degree centrality.

method

Indicate the pathway enrichment analysis, global test is "gt" and global ancova is "ga".

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Single sample profiling to compare with

Description

reference concentrations stored in the library

Usage

CalculateSSP(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


CentroidCheck

Description

CentroidCheck function used to check centroid or not

Usage

CentroidCheck(filename)

Arguments

filename

filename to check

Author(s)

Zhiqiang Pang


Check if data are ready for meta-analysis

Description

This function determines if all annotated data are ready for meta-analysis

Usage

CheckMetaDataConsistency(mSetObj = NA, combat = TRUE)

Arguments

mSetObj

Input name of the created mSet Object

combat

Adjust for batch effects, logical variable: TRUE = adjust for batch effects using an empirical Bayes framework (R package sva), FALSE = no batch effect adjustment.

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Perform data cleaning

Description

Cleans data and removes -Inf, Inf, NA, negative and 0s.

Usage

CleanData(bdata, removeNA = T, removeNeg = T, removeConst = T)

Arguments

bdata

Input data to clean

removeNA

Logical, T to remove NAs, F to not.

removeNeg

Logical, T to remove negative numbers, F to not.

removeConst

Logical, T to remove samples/features with 0s, F to not.

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Clean the data matrix

Description

Function used in higher functinos to clean data matrix

Usage

CleanDataMatrix(ndata)

Arguments

ndata

Input the data to be cleaned


Replace infinite numbers

Description

Replace -Inf, Inf to 99999 and -99999

Usage

CleanNumber(bdata)

Arguments

bdata

Input matrix to clean numbers

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Remove spaces

Description

Remove from, within, leading and trailing spaces

Usage

ClearStrings(query)

Arguments

query

Input the query to clear

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Compute average ROC curve

Description

Compute the average ROC curve

Usage

ComputeAverageCurve(perf, avg.method)

Arguments

perf

Input the average

avg.method

Input the name of the method to compute the average curve

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Lipid analysis

Description

The upper limit for each combination is considered to be the minimal of the fatty acid concentration (nmol fatty acid/gram of sample) X is the lopomics data obtained above the result is the saved as separate files for each lipid class

Usage

computeConc(X, iso = "y")

Arguments

X

Input the data

iso

Default is set to "y"

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Compute the 95 percent interval for threshold ROC

Description

Computes the 95 percent interval only for the y-axis. Utility function, called upon by higher functions

Usage

ComputeHighLow(perf)

Arguments

perf

Input the performance

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Check for missing data

Description

ContainMissing is used to check if any missing data exists in the uploaded file.

Usage

ContainMissing(mSetObj=NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Convert2AnalObject This function is used to convert mSet object from raw spectra processing for the following analysis.

Description

Convert2AnalObject This function is used to convert mSet object from raw spectra processing for the following analysis.

Usage

Convert2AnalObject(mSet, data.type, anal.type, paired = FALSE)

Arguments

mSet

mSet from raw spectral processing pipeline, OptiLCMS

data.type

data type, should be 'spec'

anal.type

analysis type, should be 'raw'

paired

data is paired or not, use FALSE by default


Convert mSetObj to proper format for MS Peaks to Pathways module

Description

Following t-test analysis or effect size calculation, this functions converts the results from the mSetObj to the proper format for mummichog analysis.

Usage

Convert2Mummichog(
  mSetObj = NA,
  rt = FALSE,
  rds.file = FALSE,
  rt.type = "seconds",
  test = "tt",
  mode = NA
)

Arguments

mSetObj

Input the name of the created mSetObj.

rt

Logical, whether or not to include retention time information.

rds.file

Logical, if true, the "annotated_peaklist.rds" must be in the current working directory to get corresponding retention time information for the features. If not, the retention time information will be taken from the feature names. Feature names must be formatted so that the mz and retention time for a single peak is separated by two underscores. For instance, m/z of 410.2148 and retention time of 42.46914 seconds must be formatted as 410.2148__42.46914.

rt.type

Character, input whether retention time is in seconds (default as RT using MetaboAnalystR is seconds) or minutes (as from MZmine).

test

Character, input what statistical values to include in the mummichog input. For p-values and t-scores only from t-test, use "tt". For log2FC from the fold-change analsis, use "fc". For effect-sizes, use "es". For, p-values, fold-changes and effect sizes, use "all". For multiple groups, use 'aov'.

mode

ion mode, positive or negative

Author(s)

Jasmine Chong, Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Convert mSetObj to proper format for MS Peaks to Pathways module

Description

Following t-test analysis or effect size calculation, this functions converts the results from the mSetObj to the proper format for mummichog analysis.

Usage

Convert2MummichogMetaPath(
  mSetObj = NA,
  rt = FALSE,
  rds.file = FALSE,
  rt.type = "seconds",
  test = "tt",
  mode = NA
)

Arguments

mSetObj

Input the name of the created mSetObj.

rt

Logical, whether or not to include retention time information.

rds.file

Logical, if true, the "annotated_peaklist.rds" must be in the current working directory to get corresponding retention time information for the features. If not, the retention time information will be taken from the feature names. Feature names must be formatted so that the mz and retention time for a single peak is separated by two underscores. For instance, m/z of 410.2148 and retention time of 42.46914 seconds must be formatted as 410.2148__42.46914.

rt.type

Character, input whether retention time is in seconds (default as RT using MetaboAnalystR is seconds) or minutes (as from MZmine).

test

Character, input what statistical values to include in the mummichog input. For p-values and t-scores only from t-test, use "tt". For log2FC from the fold-change analsis, use "fc". For effect-sizes, use "es". For, p-values, fold-changes and effect sizes, use "all".

mode

ion mode, positive or negative

Author(s)

Jasmine Chong, Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


CovariateScatter.Anal

Description

CovariateScatter.Anal

Usage

CovariateScatter.Anal(
  mSetObj,
  imgName = "NA",
  format = "png",
  analysis.var,
  ref = NULL,
  block = "NA",
  thresh = 0.05,
  pval.type = "fdr",
  contrast.cls = "anova"
)

Arguments

mSetObj

mSetObj object

imgName

image name

format

image format

analysis.var

variable of analysis

ref

reference group

block

block name

thresh

threshold

pval.type

pvalue type (raw or fdr)

contrast.cls

contrast group


Create null message for analysis Creates a message for the Sweave report

Description

Creates a message stating that no analyses were performed on your data.

Usage

CreateAnalNullMsg()

Create report of analyses

Description

Report generation using Sweave Create ANOVA document

Usage

CreateANOVAdoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses

Description

Report generation using Sweave ANOVA

Usage

CreateAOV2doc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses

Description

Report generation using Sweave Random Forest ASCA

Usage

CreateASCAdoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create biomarker analysis report: Data Input

Description

Report generation using Sweave Power analysis report, data input documentation.

Usage

CreateBiomarkerInputDoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create biomarker analysis report: Introduction

Description

Report generation using Sweave Biomarker analysis report introduction

Usage

CreateBiomarkerIntr()

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create biomarker analysis report: Overview

Description

Report generation using Sweave Power analysis report overview

Usage

CreateBiomarkerOverview()

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create biomarker analysis report: Normalization, ratio

Description

Report generation using Sweave Biomarker analysis, ratio option

Usage

CreateBiomarkerRatioOverview(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses (Biomarker)

Description

Report generation using Sweave Puts together the analysis report

Usage

CreateBiomarkerRnwReport(mSetObj, usrName)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

usrName

Input the name of the user

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses

Description

Report generation using Sweave Correlation and Partial Correlation Analysis

Usage

CreateCorAnalysis(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jessica Ewald [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses

Description

Report generation using Sweave For Correlation Heatmap

Usage

CreateCorHeatmap(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jessica Ewald [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses

Description

Report generation using Sweave Create correlation document

Usage

CreateCorrDoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses

Description

Report generation using Sweave Covariate Adjustment

Usage

CreateCovAdj(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jessica Ewald [email protected] McGill University, Canada License: GNU GPL (>= 2)


Separate data set using k-fold cross validation (CV)

Description

Separate data set with k-fold CV, used in higher function

Usage

createCVset(groupN, kfold, rseed)

Arguments

groupN

Input the size of the group

kfold

Input the number of cross-validations

rseed

Input the random seed

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses

Description

Report generation using Sweave Create EBAM document Note: the search for delta (SAM) and a0 (EBAM) will not be plotted it is only exploration, and may cause potential inconsistentcies.

Usage

CreateEBAMdoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses (Met Enrichment)

Description

Report generation using Sweave Metabolite enrichment analysis report, analysis

Usage

CreateEnrichAnalDoc()

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses (Met Enrichment)

Description

Report generation using Sweave Metabolite enrichment analysis report data input

Usage

CreateEnrichInputDoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses (Met Enrichment)

Description

Report generation using Sweave Metabolite enrichment analysis report introduction

Usage

CreateEnrichIntr()

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses (Met Enrichment)

Description

Report generation using Sweave Metabolite enrichment analysis report, over representation analysis (ORA)

Usage

CreateEnrichORAdoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses (Met Enrichment)

Description

Report generation using Sweave Metabolite enrichment analysis report overview

Usage

CreateEnrichOverview()

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses (Met Enrichment)

Description

Report generation using Sweave Metabolite enrichment analysis report enrichment process

Usage

CreateEnrichProcessDoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses (Met Enrichment)

Description

Report generation using Sweave Metabolite enrichment analysis report Quantitative enrichment analysis

Usage

CreateEnrichQEAdoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses (Met Enrichment)

Description

Report generation using Sweave Metabolite enrichment analysis report

Usage

CreateEnrichRnwReport(mSetObj, usrName)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

usrName

Input the name of the user

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses (Met Enrichment)

Description

Report generation using Sweave Metabolite enrichment analysis report Single sampling profiling

Usage

CreateEnrichSSPdoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses (Met Enrichment)

Description

Report generation using Sweave Metabolite enrichment analysis report footer

Usage

CreateFooter()

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create igraph from the edgelist saved from graph DB and decompose into subnets

Description

Function for the network explorer module, prepares user's data for network exploration.

Usage

CreateGraph(mSetObj = NA)

Arguments

mSetObj

Input name of the created mSet Object


Create Mummichog report of analyses

Description

Report generation using Sweave Function to create a summary table of mummichog analysis

Report generation using Sweave Function to create a summary table of mummichog analysis

Usage

CreateGSEAAnalTable(mSetObj = NA)

CreateGSEAAnalTable(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses

Description

Report generation using Sweave Create hierarchical clustering document

Usage

CreateHCdoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


CreateIntegMatchingTable

Description

CreateIntegMatchingTable

Usage

CreateIntegMatchingTable(mSetObj = NA)

Arguments

mSetObj

mSetObj Object


Create report of analyses (IntegPathwayAnalysis)

Description

Report generation using Sweave Puts together the analysis report

Usage

CreateIntegPathwayAnalysisRnwReport(mSetObj, usrName)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

usrName

Input the name of the user

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create integrated pathway report: Data Input

Description

Report generation using Sweave integrated pathway report, data input documentation.

Usage

CreateIntegratedPathwayAnalInputDoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jasmine Chong McGill University, viewingCanada License: GNU GPL (>= 2)


Create integrated pathway analysis report: Introduction

Description

Report generation using Sweave Integrated pathwayr analysis report introduction

Usage

CreateIntegratedPathwayAnalIntr()

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create integrated pathway analysis report

Description

Report generation using Sweave Biomarker analysis report, ROC Curve Based Model Creation and Evaluation

Usage

CreateIntegratedPathwayDoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create a x-table for gene name mapping

Description

Report generation using Sweave Function to create a table for gene name mapping

Usage

CreateIntegratedPathwayGeneMapTable(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create a x-table for compound name mapping

Description

Report generation using Sweave Function to create a table for compound name mapping

Usage

CreateIntegratedPathwayNameMapTable(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create a x-table for pathway results

Description

Report generation using Sweave Function to create a table for pathway results

Usage

CreateIntegratedPathwayResultsTable(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses

Description

Report generation using Sweave For Interactive PCA

Usage

CreateiPCAdoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses

Description

Report generation using Sweave Create Kmeans partitional clustering document

Usage

CreateKMdoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


R-code for R-SVM

Description

use leave-one-out / Nfold or bootstrape to permute data for external CV build SVM model and use mean-balanced weight to sort genes on training set and recursive elimination of least important genes

Usage

CreateLadder(Ntotal, Nmin = 5)

Arguments

Ntotal

Total number

Nmin

Minimum number, default set to 5

Author(s)

Dr. Xin Lu, Research Scientist Biostatistics Department, Harvard School of Public Health create a decreasing ladder for recursive feature elimination


Creates the mapping result table

Description

Creates the mapping result table

Usage

CreateMappingResultTable(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)


Create report of analyses

Description

Report generation using Sweave Multivariate Bayes

Usage

CreateMBdoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create Mummichog report of analyses

Description

Report generation using Sweave Function to create a summary table of mummichog analysis

Report generation using Sweave Function to create a summary table of mummichog analysis

Usage

CreateMetaAnalTable(mSetObj = NA)

CreateMetaAnalTable(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create MetaAnalysis analysis report: Data Normalization

Description

Report generation using Sweave Meta-Analysis, data normalization documentation.

Usage

CreateMetaAnalysisDEdoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create MetaAnalysis analysis report: Data Input

Description

Report generation using Sweave Power analysis report, data input documentation.

Usage

CreateMetaAnalysisInputDoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create MetaAnalysis analysis report: Introduction

Description

Report generation using Sweave MetaAnalysis analysis report introduction

Usage

CreateMetaAnalysisIntr()

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create MetaAnalysis analysis report: Data Normalization

Description

Report generation using Sweave Meta-Analysis, data normalization documentation.

Usage

CreateMetaAnalysisNORMdoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create MetaAnalysis analysis report: Data Normalization

Description

Report generation using Sweave MetaAnalysis analysis, data normalization documentation.

Usage

CreateMetaAnalysisOutput(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create MetaAnalysis analysis report: Overview

Description

Report generation using Sweave Power analysis report overview

Usage

CreateMetaAnalysisOverview()

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses (Meta-Analysis)

Description

Report generation using Sweave Puts together the analysis report

Usage

CreateMetaAnalysisRnwReport(mSetObj, usrName)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

usrName

Input the name of the user

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create analysis report: Functional Meta-Analysis Data Input

Description

Report generation using Sweave Mummichog analysis report, data input documentation.

Usage

CreateMetaMummichogInputDoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create analysis report: Functional Meta-Analysis Introduction

Description

Report generation using Sweave Mummichog analysis report introduction

Usage

CreateMetaMummichogIntro()

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create analysis report: Functional Meta-Analysis Results

Description

Report generation using Sweave Mummichog analysis report overview

Usage

CreateMetaMummichogResults(mSetObj)

Arguments

mSetObj

mSetObj

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses

Description

Report generation using Sweave For Metadata Overview

Usage

CreateMetaOverview(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jessica Ewald [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses (Biomarker)

Description

Report generation using Sweave Puts together the analysis report

Usage

CreateMetaPathRnwReport(mSetObj, usrName)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

usrName

Input the name of the user

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create MetaAnalysis table of results

Description

Report generation using Sweave Function to create a table containing meta-analysis results.

Usage

CreateMetaTable(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create biomarker analysis report: ROC Curve Based Model Creation and Evaluation

Description

Report generation using Sweave Biomarker analysis report, ROC Curve Based Model Creation and Evaluation

Usage

CreateModelBiomarkersDoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create biomarker analysis report: Multivariate Biomarker Analysis

Description

Report generation using Sweave Biomarker analysis report, Multivariate Biomarker Analysis

Usage

CreateMultiBiomarkersDoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create Mummichog report of analyses

Description

Report generation using Sweave Function to create a summary table of mummichog analysis

Report generation using Sweave Function to create a summary table of mummichog analysis

Usage

CreateMummichogAnalTable(mSetObj = NA)

CreateMummichogAnalTable(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create mummichog analysis report

Description

Report generation using Sweave Mummichog analysis report

Report generation using Sweave Mummichog analysis report

Usage

CreateMummichogAnalysisDoc(mSetObj = NA)

CreateMummichogAnalysisDoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create Mummichog analysis report: Data Input

Description

Report generation using Sweave Mummichog analysis report, data input documentation.

Report generation using Sweave Mummichog analysis report, data input documentation.

Usage

CreateMummichogInputDoc(mSetObj = NA)

CreateMummichogInputDoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create mummichog analysis report: Introduction

Description

Report generation using Sweave Mummichog analysis report introduction

Report generation using Sweave Mummichog analysis report introduction

Usage

CreateMummichogIntro()

CreateMummichogIntro()

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create Mummichog Libraries from KEGG

Description

Function to create mummichog libraries from MetaboAnalyst pathway libraries (metpa). Outputs the RDS files in the current working directory. RDS files are saved using the KEGG organism code.

Usage

CreateMummichogLibs(folder, kegg_compounds)

Arguments

folder

Input the path of the folder containing the metpa rda files.

kegg_compounds

Input the name of the KEGG dictionary containing the KEGG compound IDs, KEGG compopund names, and molecular weight.


Create analysis report: Functional Meta-Analysis Results Table

Description

Report generation using Sweave Function to create a summary table of mummichog analysis

Usage

CreateMummichogMetaAnalPathTable(mSetObj)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create analysis report: Functional Meta-Analysis

Description

Report generation using Sweave Functional Meta-Analysis Report

Usage

CreateMummichogMetaAnalReport(mSetObj)

Arguments

mSetObj

mSetObj

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create Mummichog analysis report: Overview

Description

Report generation using Sweave Mummichog analysis report overview

Report generation using Sweave Mummichog analysis report overview

Usage

CreateMummichogOverview()

CreateMummichogOverview()

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses (Biomarker)

Description

Report generation using Sweave Puts together the analysis report

Usage

CreateMummichogRnwReport(mSetObj, usrName)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

usrName

Input the name of the user

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create integrated pathway analysis report

Description

Report generation using Sweave Biomarker analysis report, ROC Curve Based Model Creation and Evaluation

Usage

CreateNetworkExplorerDoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create network explorer: Data Input

Description

Report generation using Sweave network explorer report, data input documentation.

Usage

CreateNetworkExplorerInputDoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jasmine Chong McGill University, viewingCanada License: GNU GPL (>= 2)


Create integrated pathway analysis report: Introduction

Description

Report generation using Sweave Network explorer report introduction

Usage

CreateNetworkExplorerIntr()

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create network explorer report: Overview

Description

Report generation using Sweave for the network explorer report overview

Usage

CreateNetworkExplorerOverview()

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses (Network Explorer)

Description

Report generation using Sweave Puts together the analysis report

Usage

CreateNetworkExplorerRnwReport(mSetObj, usrName)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

usrName

Input the name of the user

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create a x-table for gene name mapping

Description

Report generation using Sweave Function to create a table for gene name mapping

Usage

CreateNetworkGeneMapTable(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create a x-table for compound name mapping

Description

Report generation using Sweave Function to create a table for compound name mapping

Usage

CreateNetworkNameMapTable(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses

Description

Report generation using Sweave Create normalization document

Usage

CreateNORMdoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses

Description

Report generation using Sweave Create OPLSDA document

Usage

CreateOPLSDAdoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses (Met Pathway)

Description

Report generation using Sweave Metabolomic pathway analysis Create pathway analysis doc

Usage

CreatePathAnalDoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses (Met Pathway)

Description

Report generation using Sweave Metabolomic pathway analysis Create data input doc

Usage

CreatePathInputDoc()

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses (Met Pathway)

Description

Report generation using Sweave Metabolomic pathway analysis Introduction

Usage

CreatePathIntr()

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses (Met Pathway)

Description

Report generation using Sweave Metabolomic pathway analysis Create MetPA process

Usage

CreatePathProcessDoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses (Met Pathway)

Description

Report generation using Sweave Metabolomic pathway analysis Create MetPA results doc

Usage

CreatePathResultDoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses (Met Pathway)

Description

Report generation using Sweave Metabolomic pathway analysis write .Rnw file template

Usage

CreatePathRnwReport(mSetObj, usrName)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

usrName

Input the name of the user

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses

Description

Report generation using Sweave Create PCA document

Usage

CreatePCAdoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses

Description

Report generation using Sweave Create PLS document

Usage

CreatePLSdoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create power analysis report: Power Analysis

Description

Report generation using Sweave Power analysis report, analysis

Usage

CreatePowerAnalDoc(mSetObj)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create power analysis report: Data Input

Description

Report generation using Sweave Power analysis report, data input documentation.

Usage

CreatePowerInputDoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create power analysis report: Introduction

Description

Report generation using Sweave Power analysis report introduction

Usage

CreatePowerIntr()

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create power analysis report: Overview

Description

Report generation using Sweave Power analysis report overview

Usage

CreatePowerOverview()

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create power analysis report: Power Parameter Selection

Description

Report generation using Sweave Power analysis report, parameter selection

Usage

CreatePowerParametersDoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses (Power)

Description

Report generation using Sweave Put together the analysis report

Usage

CreatePowerRnwReport(mSetObj, usrName)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

usrName

Input the name of the user

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses

Description

Report generation using Sweave Random Forest

Usage

CreateRandomForest(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jessica Ewald [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses

Description

Report generation using Sweave Function to create a summary table for biomarker analysis: included metabolite ratios

Usage

CreateRatioTable(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create report for raw spectra module

Description

Report generation using Sweave Write .Rnw file template

Usage

CreateRawAnalysisRnwReport(mSetObj, usrName)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

usrName

Input the name of the user

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses

Description

Report generation using Sweave Create Random Forest document

Usage

CreateRFdoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses

Description

Report generation using Sweave Create footer

Usage

CreateRHistAppendix()

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create a x-table for newly classified samples

Description

Report generation using Sweave Function to create a table for newly classified samples

Usage

CreateROCLabelsTable(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses

Description

Report generation using Sweave Create SAM document

Usage

CreateSAMdoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create semitransparant colors

Description

Create semitransparant colors for a given class label

Usage

CreateSemiTransColors(cls)

Arguments

cls

Input class labels

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses

Description

Report generation using Sweave Create SOM partitional clustering document

Usage

CreateSOMdoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses

Description

Report generation using Sweave Create sPLS-DA document

Usage

CreateSPLSDAdoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses

Description

Report generation using Sweave Create header

Usage

CreateStatIntr()

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses

Description

Report generation using Sweave Read and process raw data

Usage

CreateStatIOdoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create report for statistical analysis module

Description

Report generation using Sweave Write .Rnw file template

Usage

CreateStatRnwReport(mSetObj, usrName)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

usrName

Input the name of the user

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses

Description

Report generation using Sweave Create a summary table for each type of uploaded data csv table has 5 col: sampleID, feature #, zero, missing #

Usage

CreateSummaryTable(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses

Description

Report generation using Sweave Create R-SVM document

Usage

CreateSVMdoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create null analysis message for time-series sweave report

Description

Creates empty time-series analysis message

Usage

CreateTimeSeriesAnalNullMsg()

Create report of analyses (Met Pathway)

Description

Report generation using Sweave Metabolomic pathway analysis, time-series Read and process the raw data

Usage

CreateTimeSeriesIOdoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses (Met Pathway)

Description

Report generation using Sweave Metabolomic pathway analysis Create timeseries .Rnw file template

Usage

CreateTimeSeriesRnwReport(mSetObj, usrName)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

usrName

Input the name of the user

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create power analysis report: Biomarker Univariate Analysis

Description

Report generation using Sweave Biomarker analysis report, Univariate Analysis

Usage

CreateUnivarBiomarkersDoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create report of analyses

Description

Report generation using Sweave Create univariate analyses document

Usage

CreateUNIVdoc(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create summary table for univariate ROC analysis

Description

Report generation using Sweave Function to create a summary table for univariate biomarker analysis

Usage

CreateUnivROCTable()

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Create MetaAnalysis table of results for Venn Diagram

Description

Report generation using Sweave Function to create a table containing meta-analysis results.

Usage

CreateVennMetaTable(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Various functions for mapping b/w names & database identifiers Given a list of compound names or ids, find matched name or ids from selected databases

Description

Given a list of compound names or ids find matched name or IDs from selected databases

Usage

CrossReferencing(
  mSetObj = NA,
  q.type,
  hmdb = T,
  pubchem = T,
  chebi = F,
  kegg = T,
  metlin = F,
  lipid = F
)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects).

q.type

Input the query type, "name" for compound names, "hmdb" for HMDB IDs, "kegg" for KEGG IDs, "pubchem" for PubChem CIDs, "chebi" for ChEBI IDs, "metlin" for METLIN IDs, and "hmdb_kegg" for a both KEGG and HMDB IDs.

hmdb

Logical, T to cross reference to HMDB, F to not.

pubchem

Logical, T to cross reference to PubChem, F to not.

chebi

Logical, T to cross reference to CheBI, F to not.

kegg

Logical, T to cross reference to KEGG, F to not.

metlin

Logical, T to cross reference to MetLin, F to not.

lipid

Logical, if features are lipids (T), a different database will be used for compound matching.

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Perform utilities for peak grouping

Description

Perform various utilities for peak grouping

Usage

descendMin(y, istart = which.max(y))

Arguments

y

Input peaks

istart

Performs which.max on y

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Perform compound mapping

Description

Perform compound mapping

Usage

doCompoundMapping(cmpd.vec, q.type)

Arguments

cmpd.vec

Input compound vector

q.type

Query type


Convert different gene IDs into entrez IDs for downstream analysis

Description

Gene ID mapping, gene annotation, compound mapping, KEGG mapping

Usage

doGeneIDMapping(q.vec, org, type)

Arguments

q.vec

Input the query

org

Input the organism type

type

Input the type of data to annotate

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Perform KEGG to compound name mapping

Description

Perform KEGG to compound name mapping

Usage

doKEGG2NameMapping(kegg.vec)

Arguments

kegg.vec

Input vector of KEGG compounds


Utility function

Description

Returns matched KO in the same order (NA if no match)

Usage

doKOFiltering(ko.vec, type)

Arguments

ko.vec

Input the vector containing KOs

type

Input the type


Develop a Logistic Regression Model with all of the combined k-fold CV subsets

Description

Develop a Logistic Regression Model with all of the combined k-fold CV subsets

Usage

doLogisticRegMdl(x.train, y.train, x.test, y.test)

Arguments

x.train

Input the X training set

y.train

Input the Y training set

x.test

Input the X test set

y.test

Input the Y test set

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


For EBAM analysis

Description

deteriming a0, only applicable for z.ebam (default)

Usage

EBAM.Init(
  mSetObj = NA,
  isPaired,
  isVarEq,
  nonPar,
  A0 = -99,
  delta,
  imgA0,
  imgSig,
  dpi = 72
)

Arguments

mSetObj

Input name of the created mSet Object

isPaired

Logical

isVarEq

Logical

nonPar

nonPar

A0

A0

delta

delta

imgA0

imgA0

imgSig

imgSig

dpi

dpi value of images

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Fold change analysis, unpaired

Description

Perform fold change analysis, method can be mean or median

Usage

FC.Anal(mSetObj, fc.thresh=2, cmp.type = 0, paired=FALSE)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

fc.thresh

Fold-change threshold, numeric input

cmp.type

Comparison type, 0 for group 1 minus group 2, and 1 for group 1 minus group 2

paired

Logical, TRUE or FALSE

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Pattern hunter

Description

Calculate correlation of all other feature to a given feature name

Usage

FeatureCorrelation(mSetObj = NA, dist.name, varName)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

dist.name

Input the name of the distance measure

varName

Input the variable name

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Methods for non-specific filtering of variables

Description

This is a function that filters the dataset, dependent on the user-specified method for filtering. The function applies a filtering method, ranks the variables within the dataset, and removes variables based on its rank. The final dataset should contain no more than than 5000 variables for effective computing.

Usage

FilterVariable(mSetObj=NA, filter, qcFilter, rsd)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

qc.filter

Filter the variables based on QC samples - True (T), or use non-QC based filtering - False (F).

rsd

Define the relative standard deviation cut-off. Variables with a RSD greater than this number will be removed from the dataset. It is only necessary to specify this argument if qc.filter is True (T). Otherwise, it will not be used in the function.

var.filter

Select the filter option, "rsd" which is the relative standard deviation, "nrsd" which is the non-parametric relative standard deviation, "mean" which is the mean, "sd" which is the standard deviation, "mad" which is the median absolute deviation, or "iqr" which is the interquantile range.

var.cutoff

var.cutoff value

int.filter

int.filter value

int.cutoff

int.cutoff value, numeric

filter.cutoff

percent to be filtered, for example, 5 (5%)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Perform utilities for peak grouping

Description

Perform various utilities for peak grouping

Usage

findEqualGreaterM(x, values)

Arguments

x

Input the data

values

Input the values

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Fisher for ANOVA

Description

Perform Fisher LSD for ANOVA, used in higher function

Usage

FisherLSD(aov.obj, thresh)

Arguments

aov.obj

Input the anova object

thresh

Numeric, input the alpha threshold

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


GeneratePeakList

Description

GeneratePeakList is used to generate the peak summary list for result page

Usage

GeneratePeakList(userPath)

Arguments

userPath

userPath

Author(s)

Zhiqiang Pang


Function for ASCA permutation

Description

Dummy is used only for the purpose to maintain lapply API this is used for permutation on ANOVA paritions, not on the SCA/PCA part, so the number of selected components is not applicable in this step

Usage

Get.asca.tss(dummy, perm = T)

Arguments

dummy

Dummy variable

perm

Logical, TRUE by default

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Compute within group and between group sum of squares (BSS/WSS) for each row of a matrix which may have NA

Description

Columns have labels, x is a numeric vector, cl is consecutive integers

Usage

Get.bwss(x, cl)

Arguments

x

Numeric vector

cl

Columns

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Get the concentration reference

Description

Get the concentration reference

Usage

Get.ConcRef(mSetObj = NA, cmpd.nm)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

cmpd.nm

Input the compound name


Fast leverage calculation for permutation purpose

Description

note, the leverage combines all components the importance feature is for the factor not per components

Usage

Get.Leverage(XKw, Fac)

Arguments

XKw

Features

Fac

Factor

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Calculate partial area under ROC curve

Description

Calculate partial area under ROC curve

Usage

Get.pAUC(x, y, focus, cutoff)

Arguments

x

Input X

y

Input Y

focus

Method

cutoff

Numeric

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Get predicted class probability

Description

Get predicted class probability, used in higher function

Usage

Get.pred(x.train, y.train, x.test, y.test, clsMethod = "pls")

Arguments

x.train

Training X

y.train

Training Y

x.test

Test X

y.test

Test Y

clsMethod

Method to predict class, by default it is PLS

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Get the text description of a recursive partitioning (rpart) result

Description

x must be an rpart object

Usage

Get.rpart.summary(x)

Arguments

x

An Rpart object

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Calculate variable importance of projection (VIP) score for PLS object

Description

Users give a pls object ('oscorespls'=T), function calculates VIP score usually one VIP for each component, return is the average of all VIP

Usage

Get.VIP(pls.obj, comp = 2)

Arguments

pls.obj

Input the PLS object

comp

Numeric, input the number of components, by default it is 2

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Determine value label for plotting

Description

Concentration or intensity data type

Usage

GetAbundanceLabel(data.type)

Arguments

data.type

Input concentration or intensity data

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Export biomarker accuracy information

Description

Export biomarker accuracy information

Usage

GetAccuracyInfo(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)


Get all meta-analysis name data

Description

Get all meta-analysis name data

Usage

GetAllDataNames()

K-means analysis - cluster

Description

K-means analysis - cluster

Usage

GetAllKMClusterMembers(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)


SOM analysis

Description

Get members for given cluster index, return a character string

Usage

GetAllSOMClusterMembers(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Get all candidate compound names for a given index

Description

Returns 3 coloumns - inx, name, score

Usage

GetCandidateList(mSetObj = NA, lipid)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

lipid

Logical

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Export information about selected circle

Description

Export information about selected circle

Usage

GetCircleInfo(mSetObj = NA)

Arguments

mSetObj

Input name of the created mSet Object


Get confidence intervals

Description

For non-parametric tests, use quantiles, use normal (1.96*std.err) if parametric

Usage

GetCIs(data, param = F)

Arguments

data

Input data matrix

param

Logical, False by default

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Retrieve last command from the Rhistory.R file

Description

Fetches the last command from the Rhistory.R file

Usage

GetCMD(regexp)

Arguments

regexp

Retrieve last command from Rhistory file

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Function to get adduct details from a specified compound

Description

Function to get adduct details from a specified compound. The results will be both printed in the console as well as saved as a csv file. Note that performing this function multiple times will overwrite previous queries.

Usage

GetCompoundDetails(mSetObj = NA, cmpd.id)

Arguments

mSetObj

Input the name of the created mSetObj object.

cmpd.id

Input the name of the selected compound.


Perform utilities for cropping images

Description

Obtain the full path to convert (from imagemagik) for cropping images

Usage

GetConvertFullPath()

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Transform two column text to data matrix

Description

Transform two column input text to data matrix (single column data frame)

Usage

getDataFromTextArea(txtInput, sep.type = "space")

Arguments

txtInput

Input text

sep.type

Indicate the seperator type for input text. Default set to "space"

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Extend axis

Description

Extends the axis range to both ends vec is the values for that axis unit is the width to extend, 10 will increase by 1/10 of the range

Usage

GetExtendRange(vec, unit = 10)

Arguments

vec

Input the vector

unit

Numeric

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Used by higher functions to calculate fold change

Description

Utility method to calculate FC, used in higher function

Usage

GetFC(mSetObj = NA, paired = FALSE, cmpType)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

paired

Logical, true of false

cmpType

Numeric, 0 or 1

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Numbers for subset selection

Description

Return a series of number for subsets selection

Usage

GetFeatureNumbers(feat.len)

Arguments

feat.len

Input the feature length

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Return the final (after user selection) map as dataframe

Description

Returns three columns: original name, HMDB name and KEGG ID, for enrichment and pathway analysis, respectively

Usage

GetFinalNameMap(mSetObj = NA, lipid = FALSE)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

lipid

Logical

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Get fisher p-values

Description

Get fisher p-values

Usage

GetFisherPvalue(numSigMembers, numSigAll, numMembers, numAllMembers)

Arguments

numSigMembers

Number of significant members

numSigAll

Number of all significant features

numMembers

Number of members

numAllMembers

Number of all members


Get all group names

Description

Get all group names

Usage

GetGroupNames(mSetObj = NA, exp.fac = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

exp.fac

exp.fac

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Given a metset inx, return hmtl highlighted metset cmpds and references

Description

Given a metset inx, return hmtl highlighted metset cmpds and references

Usage

GetHTMLMetSet(mSetObj = NA, msetNm)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

msetNm

Input the name of the metabolite set

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Given a metset inx, return hmtl highlighted pathway cmpds

Description

Given a metset inx, return hmtl highlighted pathway cmpds

Usage

GetHTMLPathSet(mSetObj = NA, msetNm)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

msetNm

Input the name of the metabolite set

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Get important feature matrix

Description

feat.outp is a list that contains the ranked features in each cross validation (CV) and returns a two column matrix, col 1 = median ranking and col 2 = mean importance measure

Usage

GetImpFeatureMat(mSetObj = NA, feat.outp, bestFeatNum)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

feat.outp

Input the list that contains the ranked features in each cross validation (CV) and returns a two column matrix, col 1 = median ranking and col 2 = mean importance measure

bestFeatNum

Numeric

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Retrieves KEGG node information

Description

Retrieves KEGG node information

Usage

GetKEGGNodeInfo(pathName, g, width, height, usr = par("usr"))

Arguments

pathName

Input the path Name

g

Input data

width

Input the width

height

Input the height

usr

Input the user


K-means analysis - cluster

Description

Get the cluster members for given index add HTML color to the names based on its group membership

Usage

GetKMClusterMembers(mSetObj = NA, i)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

i

Input the cluster index

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Compute lasso frequency

Description

Not part of default, need to perform function to compute lasso frequency msg: There are more than 500 variables and n<m You may wish to restart and set use.Gram=FALSE

Usage

GetLassoFreqs(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Get result table from eBayes fit object

Description

Get result table from eBayes fit object

Usage

GetLimmaResTable(fit.obj)

Arguments

fit.obj

eBayes fit object to parse to a table


Get mapping table

Description

Return results from compound name mapping in a table

Usage

GetMapTable(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)


For plotting PCA, selects max top 9 components

Description

Rotate PCA analysis

Usage

GetMaxPCAComp(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Compute data points on the ROC curve

Description

perf is the performance object from ROCR

Usage

GetMeanROC(perf)

Arguments

perf

Performance object from ROCR

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Single.type return logFC or p value for individual data analysis

Description

Single.type return logFC or p value for individual data analysis

Usage

GetMetaResultMatrix(mSetObj = NA, single.type = "fc")

Arguments

mSetObj

Input name of the created mSet Object

single.type

Default is "fc"


Given a metset inx, give its name

Description

Given a metset inx, give its name

Usage

GetMetSetName(mSetObj = NA, msetInx)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

msetInx

Input the index of the metabolite set

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Get the library check messages

Description

Get the library check messages

Usage

GetMsetLibCheckMsg(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)


Return the selected metset library to java for display

Description

Return the selected metset library to java for display

Usage

GetMsetNames(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Function to get compound details from a specified pathway

Description

Function to get compound details from a specified pathway. The results will be both printed in the console as well as saved as a csv file. Note that performing this function multiple times will overwrite previous queries. Significant compounds will be indicated with an asterisk.

Usage

GetMummichogPathSetDetails(mSetObj = NA, msetNm)

Arguments

mSetObj

Input the name of the created mSetObj object.

msetNm

Input the name of the pathway


Exports Gene-Mapping result into a table

Description

Exports Gene-Mapping result into a table

Usage

GetNetworkGeneMappingResultTable(mSetObj = NA)

Arguments

mSetObj

Input name of the created mSet Object


Obtain sample names and their class labels

Description

Obtain sample names and their class labels

Usage

GetNewSampleNames(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Function to retrieve dataset from the Metabolomics Workbench.

Description

This function uses the httr R package to make an API call to the Metabolomics Workbench to download and save a dataset based on the Study ID into the current working directory.

Usage

GetNMDRStudy(mSetObj=NA, StudyID)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects).

StudyID

Input the StudyID of the study from the Metabolomics Workbench. Use the ListNMDRStudies function to obtain a list of all available studies from the Metabolomics Workbench.

Author(s)

Jeff Xia [email protected], Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Export pathway names from ORA analysis

Description

Export pathway names from ORA analysis

Usage

GetORA.pathNames(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)


Only for human pathways (SMPDB)

Description

Only for human pathways + ath, eco, mmu & sce

Usage

GetORA.smpdbIDs(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Get ORA table

Description

Get ORA table

Usage

GetORATable(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)


Only for human pathways (KEGG)

Description

Only for human pathways + ath, eco, mmu & sce

Usage

GetQEA.keggIDs(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Export pathway names from QEA analysis

Description

Export pathway names from QEA analysis

Usage

GetQEA.pathNames(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)


QEA table

Description

QEA table

Usage

GetQEATable(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)


Export R Command History

Description

Export R Command History

Usage

GetRCommandHistory(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)


Classification performance table for random forest analysis

Description

Classification performance table for random forest analysis

Usage

GetRFConf.Table(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)


Random Forest Confusion Matrix

Description

Return double confusion matrix

Usage

GetRFConfMat(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Random Forest OOB

Description

Get the OOB error for the last signif

Usage

GetRFOOB(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Random Forest Significance matrix

Description

Significance measure, double brackets

Usage

GetRFSigMat(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Return ROC corodinates with confidence intervals

Description

Return ROC corodinates with confidence intervals

Usage

GetROC.coords(mSetObj = NA, fld.nm, val, plot = TRUE, imgNm)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

fld.nm

The kind of input coordinate

val

The coordinates to look for

plot

Logical, by default set to TRUE

imgNm

Input the image name

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Get p-values from lasso

Description

Get p-values from lasso

Usage

GetROCLassoFreq(data, cls)

Arguments

data

Input data

cls

Input class labels

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Get p-values for ROC

Description

ROC p-vaues, used in higher function

Usage

GetROCTtestP(data, cls)

Arguments

data

Input data

cls

Input class labels

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Retrieve sample size ladder

Description

Return sample size ladder, used in higher functions

Usage

GetSampleSizeLadder(maxNum)

Arguments

maxNum

Numeric

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create Latex table

Description

generate Latex table

Usage

GetSigTable(mat, method, data.type)

Arguments

mat

Input matrix

method

Input method to create table

data.type

Input the data type

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Sig Table for Anova

Description

Sig Table for Anova

Usage

GetSigTable.Anova(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)


Sig table for AOV2

Description

Sig table for AOV2

Usage

GetSigTable.Aov2(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)


Table of features well modelled by ASCA

Description

Table of features well modelled by ASCA

Usage

GetSigTable.ASCA(mSetObj = NA, nm)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

nm

Input the name of the well modelled features

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Sig table for Correlation Analysis

Description

Sig table for Correlation Analysis

Usage

GetSigTable.Corr(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)


Sig Table for Anova

Description

Sig Table for Anova

Usage

GetSigTable.Dose(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)


Sig table for EBAM

Description

Sig table for EBAM

Usage

GetSigTable.EBAM(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)


Sig Table for Fold-Change Analysis

Description

Sig Table for Fold-Change Analysis

Usage

GetSigTable.FC(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)


Sig table for MB analysis

Description

Sig table for MB analysis

Usage

GetSigTable.MB(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)


Sig table for random forest analysis

Description

Sig table for random forest analysis

Usage

GetSigTable.RF(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)


Sig table for SAM

Description

Sig table for SAM

Usage

GetSigTable.SAM(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)


Sig table for SVM

Description

Sig table for SVM

Usage

GetSigTable.SVM(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)


Sig Table for T-test Analysis

Description

Sig Table for T-test Analysis

Usage

GetSigTable.TT(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)


Sig table for Volcano Analysis

Description

Sig table for Volcano Analysis

Usage

GetSigTable.Volcano(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)


SOM analysis

Description

Get members for given cluster index, return a character string

Usage

GetSOMClusterMembers(mSetObj = NA, i, j)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

i

Index of X

j

Index of Y

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Replace the last column of the ssp.mat with the final selection from users

Description

Replace the last column of the ssp.mat with the final selection from users

Usage

GetSSPTable(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


For SAM analysis

Description

obtain a default delta with reasonable number of sig features and decent FDR

Usage

GetSuggestedSAMDelta(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Recursive Support Vector Machine (R-SVM) Significance Measure

Description

Return significance measure, double[][]

Usage

GetSVMSigMat(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Volcano indices

Description

Get indices of top n largest/smallest number

Usage

GetTopInx(vec, n, dec = T)

Arguments

vec

Vector containing volcano indices

n

Numeric

dec

Logical, default set to TRUE

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Make random partitions

Description

Make random partitions, returns matrices indicating whether the observation is in train/test for each run note: try to get a balanced sampling for each group (classification) or each quantile (regression). This is very useful for unbalanced data

Usage

GetTrainTestSplitMat(y, propTraining = 2/3, nRuns = 30)

Arguments

y

Input the data

propTraining

By default set to 2/3

nRuns

By default set to 30

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Retrieve T-test p-values

Description

Utility method to get p values

Usage

GetTtestRes(mSetObj = NA, paired = FALSE, equal.var = TRUE, nonpar = F)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

paired

Default set to FALSE

equal.var

Default set to TRUE

nonpar

Use non-parametric tests, default is set to FALSE

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


T-test matrix

Description

Return a double matrix with 2 columns - p values and lod

Usage

GetTTSigMat(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Utility method to perform the univariate analysis automatically

Description

The approach is computationally expensive,and fails more often get around: make it lazy unless users request, otherwise the default t-test will also be affected

Usage

GetUnivReport(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Determine variable label for plotting

Description

Determine data type, binned spectra, nmr peak, or ms peak

Usage

GetVariableLabel(data.type)

Arguments

data.type

Input the data type

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Determine row/column number for plotting

Description

Determine the number of rows and columns for a given total number of plots (used by Kmeans and SOM plots)

Usage

GetXYCluster(total)

Arguments

total

Input the total

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Group peak list

Description

Group peaks from the peak list based on position using the XCMS grouping algorithm (align peaks wrt, rt, and mz). For NMR peaks, need to change ppm -> mz and add dummy rt. If the data is 2-column MS, first need to add dummy rt. If the data is 3-column MS, the data can be used directly. The default mzwid for MS is 0.25 m/z, and for NMR is 0.03 ppm. The default bw is 30 for LCMS, and 5 for GCMS.

Usage

GroupPeakList(mSetObj=NA, mzwid, bw, minfrac, minsamp, max)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

mzwid

define the width of overlapping m/z slices to use for creating peak density chromatograms and grouping peaks across samples

bw

define the bandwidth (standard deviation or half width at half maximum) of gaussian smoothing kernel to apply to the peak density chromatogram

minfrac

define the minimum fraction of samples necessary in at least one of the sample groups for it to be a valid group

minsamp

define the minimum number of samples necessary in at least one of the sample groups for it to be a valid group

max

define the maximum number of groups to identify in a single m/z slice

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Heckbert algorithm

Description

function to calculate tick mark based on Heckbert algorithm available in the "labeling" package implemented by Justin Talbot adapted from the imagemap package Heckbert's labeling algorithm Heckbert, P. S. (1990) Nice numbers for graph labels, Graphics Gems I, Academic Press Professional, Inc.

Usage

heckbert(dmin, dmax, m)

Arguments

dmin

Heckbert

dmax

Heckbert

m

Heckbert

Author(s)

Justin Talbot [email protected]


Given a vector of HMDBIDs, return a vector of KEGG IDs

Description

This function, when given a vector of HMDBIDs, returns a vector of KEGG ID. HMDB standing for the Human Metabolome Database.

Usage

HMDBID2KEGGID(ids)

Arguments

ids

Input the vector of HMDB Ids

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Given a vector of HMDBIDs, return a vector of HMDB compound names

Description

This function, when given a vector of HMDBIDs, return a vector of HMDB compound names. HMDB standing for the Human Metabolome Database.

Usage

HMDBID2Name(ids)

Arguments

ids

Input the vector of HMDB Ids

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Data processing: Replace missing variables

Description

Replace missing variables by min/mean/median/KNN/BPCA/PPCA/svdImpute.

Usage

ImputeMissingVar(mSetObj, method)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

method

Select the option to replace missing variables, either replacement based on the minimum ("min), the mean ("mean"), or the median ("median") value of each feature columns, or several options to impute the missing values, using k-nearest neighbour ("KNN"), probabilistic PCA ("PPCA"), Bayesian PCA ("BPCA") method, or Singular Value Decomposition ("svdImpute")

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Constructs a dataSet object for storing data

Description

This functions handles the construction of a mSetObj object for storing data for further processing and analysis. It is necessary to utilize this function to specify to MetaboAnalystR the type of data and the type of analysis you will perform.

Usage

InitDataObjects(data.type, anal.type, paired=FALSE)

Arguments

data.type

The type of data, either list (Compound lists), conc (Compound concentration data), specbin (Binned spectra data), pktable (Peak intensity table), nmrpeak (NMR peak lists), mspeak (MS peak lists), or msspec (MS spectra data)

anal.type

Indicate the analysis module to be performed: stat, pathora, pathqea, msetora, msetssp, msetqea, mf, cmpdmap, smpmap, or pathinteg

paired

indicate if the data is paired or not. Logical, default set to FALSE

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


InitializePlan

Description

this function is used to initialize a plan before submit job to spring daemon

Usage

InitializaPlan()

Author(s)

Zhiqiang Pang


InitMSObjects

Description

InitMSObjects

Usage

InitMSObjects(data.type = NULL, anal.type = NULL, paired = FALSE)

Arguments

data.type

should be "raw"

anal.type

should be "spec"

paired

should be "FALSE"


Function for power analysis

Description

Perform power analysis, requires the SSPA R package.

Usage

InitPowerAnal(mSetObj, clsOpts)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

clsOpts

For data with >2 groups, specify the two classes on which to perform power analysis, otherwise for data with 2 groups, "NA" will automatically select the 2 groups.

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Introduction for statistical analysis module report Initialize Statistical Analysis Report

Description

Introduction for statistical analysis module report Initialize Statistical Analysis Report

Usage

InitStatAnalMode()

Create report of analyses (Met Pathway)

Description

Report generation using Sweave Metabolomic pathway analysis, time-series analysis

Usage

InitTimeSeriesAnal()

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Perform PCA analysis, prepare file for interactive liveGraphics3D

Description

Perform PCA analysis, prepares a JSON file for interactive liveGraphics3D, as well as interactive 3D PCA score and loading plots using the plotly R package. These plots are saved in the created mSetObj; to view these, type "mSetObj$imgSet$time$score3d" to view the interactive score plot, and "mSetObj$imgSet$time$load3d" to view the interactive loading plot.

Usage

iPCA.Anal(mSetObj, fileNm, metaCol, metaShape)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

fileNm

select a file name

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Sig table matrix is empty

Description

Test if a sig table matrix is empty

Usage

isEmptyMatrix(mat)

Arguments

mat

Matrix to test if empty

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Check if the sample size is small

Description

Returns whether or not the sanity check found that there were too many groups in the dataset containing too few samples. It will return a 0 if the data passes the check, or will return a 1 if the data does not.

Usage

IsSmallSmplSize(mSetObj=NA)

Arguments

mSetObj

Input name of the created mSet Object


Given a vector of KEGGIDs, return a vector of HMDB ID

Description

This functionn, when given a vector of KEGGIDs, returns a vector of HMDB IDs. HMDB standing for the Human Metabolome Database.

Usage

KEGGID2HMDBID(ids)

Arguments

ids

Vector of KEGG ids

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Given a vector containing KEGGIDs, returns a vector of KEGG compound names

Description

This function, given a vector containing KEGGIDs, returns a vector of KEGG compound names.

Usage

KEGGID2Name(ids)

Arguments

ids

Vector of KEGG ids

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Given a vector containing KEGG pathway IDs, return a vector containing SMPDB IDs (only for hsa)

Description

This function, when given a vector of KEGG pathway IDs, return a vector of SMPDB IDs (only for hsa). SMPDB standing for the Small Molecule Pathway Database, and hsa standing for human serum albumin.

Usage

KEGGPATHID2SMPDBIDs(ids)

Arguments

ids

Vector of KEGG pathway IDs

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


K-means analysis

Description

Perform K-means analysis

Usage

Kmeans.Anal(mSetObj = NA, clust.num)

Arguments

mSetObj

Input name of the created mSet Object

clust.num

Numeric, input the number of clusters for K-means analysis

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Kruskal-Wallis

Description

Perform Kruskal-Wallis Test

Usage

kwtest(x, cls)

Arguments

x

Input data to perform Kruskal-Wallis

cls

Input class labels

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Function to retrieve all available datasets from the Metabolomics Workbench.

Description

This function uses the httr R package to make an API call to the Metabolomics Workbench to retrieve a table of all compatible datasets.

Usage

ListNMDRStudies(mSetObj=NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects).

Author(s)

Jeff Xia [email protected], Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Utility function for PerformKOEnrichAnalysis_KO01100

Description

Utility function for PerformKOEnrichAnalysis_KO01100

Usage

LoadKEGGKO_lib(category)

Arguments

category

Module or pathway


Column-wise Normalization

Description

Column-wise norm methods, when x is a column Options for log, zero mean and unit variance, and several zero mean and variance/SE

Usage

LogNorm(x, min.val)

Arguments

x

Input data

min.val

Input minimum value

Author(s)

Jeff Xia [email protected] McGill University, Canada


Utility function to create compound lists for permutation analysis

Description

From a vector of m/z features, this function outputs a vector of compounds.

Usage

make_cpdlist(mSetObj=NA, input_mzs)

Arguments

mSetObj

Input the name of the created mSetObj

input_mzs

The vector of randomly drawn m/z features.

Author(s)

Jasmine Chong, Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Utility function to create compound lists for permutation analysis

Description

From a vector of m/z features, this function outputs a vector of compounds.

Usage

make_ecpdlist(mSetObj=NA, input_mzs)

Arguments

mSetObj

Input the name of the created mSetObj

input_mzs

The vector of randomly drawn m/z features.

Author(s)

Jasmine Chong, Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


sPLS-DA Map

Description

map variable for (s)plsda

Usage

map(Y)

Arguments

Y

Input data

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Utility function for PrepareKeggQueryJson

Description

Utility function for PrepareKeggQueryJson

Usage

MapCmpd2KEGGNodes(cmpds, net = "ko01100")

Arguments

cmpds

Input the compounds

net

Input the network name


Utility function for PrepareKeggQueryJson

Description

Utility function for PrepareKeggQueryJson

Usage

MapKO2KEGGEdges(kos, net = "ko01100")

Arguments

kos

Input the KOs

net

Input the name of the network


Match pattern for correlation analysis

Description

Match pattern for correlation analysis

Usage

Match.Pattern(mSetObj = NA, dist.name = "pearson", pattern = NULL)

Arguments

mSetObj

Input the name of the created mSetObj

dist.name

Input the distance method, default is set to pearson

pattern

Set the pattern, default is set to NULL


melt Convert an object into a molten data frame. This function is from reshape2 package.

Description

This the generic melt function. See the following functions for the details about different data structures:

Usage

melt(data, ..., na.rm = FALSE, value.name = "value")

Arguments

data

Data set to melt

...

further arguments passed to or from other methods.

na.rm

Should NA values be removed from the data set? This will convert explicit missings to implicit missings.

value.name

name of variable used to store values


Utility function for PrepareKeggQueryJson

Description

Utility function for PrepareKeggQueryJson

Usage

MergeDatasets(dataSet1, dataSet2)

Arguments

dataSet1

Input the first dataset

dataSet2

Input the second dataset


Merge duplicated columns or rows by their mean

Description

dim 1 => row, dim 2 => column

Usage

MergeDuplicates(data, dim = 2)

Arguments

data

Input the data

dim

Numeric, input the dimensions, default is set to 2


MetaboAnalystR: A package for computating the notorious bar statistic.

Description

The MetaboAnalystR package provides a pipeline for metabolomics processing.

MetaboAnalystR functions

The MetaboAnalystR functions ...


Mapping from different metabolite IDs

Description

For compound names to other ids, can do exact or approximate matches For other IDs, except HMDB ID, all others may return multiple/non-unique hits Multiple hits or non-unique hits will allow users to manually select

Usage

MetaboliteMappingExact(mSetObj = NA, q.type, lipid = F)

Arguments

mSetObj

Input the name of the created mSetObj.

q.type

Inpute the query-type, "name" for compound names, "hmdb" for HMDB IDs, "kegg" for KEGG IDs, "pubchem" for PubChem CIDs, "chebi" for ChEBI IDs, "metlin" for METLIN IDs, and "hmdb_kegg" for a both KEGG and HMDB IDs.

lipid

Boolean, if features are lipids, a different database will be used for compound matching.

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


MetaPathNormalization

Description

MetaPathNormalization

Usage

MetaPathNormalization(
  mSetObj = NA,
  sampleNor,
  tranform,
  scale = "NULL",
  name,
  name2
)

Arguments

mSetObj

mSetObj

sampleNor

sample Normalization option

tranform

sample transformation option

scale

sample scale option

name

file name 1 with absolute path

name2

file name 2 with absolute path or "null"

Author(s)

Jeff Xia[email protected] Zhiqiang Pang[email protected] McGill University, Canada License: GNU GPL (>= 2)


Get multiple category statistics

Description

Get multiple category statistics

Usage

multi.stat(pred, resp)

Arguments

pred

Input predictions

resp

Input responses

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Calculate Fisher's Least Significant Difference (LSD)

Description

Adapted from the 'agricolae' package

Usage

my.lsd.test(y, trt, alpha = 0.05)

Arguments

y

Input Y

trt

Input trt

alpha

Numeric, default is 0.05

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


my.parse.peaklist

Description

Read peak list files. This function reads peak list files and fills the data into a dataSet object. For NMR peak lists, the input should be formatted as two-columns containing numeric values (ppm, int). Further, this function will change ppm to mz, and add a dummy 'rt'. For MS peak data, the lists can be formatted as two-columns (mz, int), in which case the function will add a dummy 'rt', or the lists can be formatted as three-columns (mz, rt, int).

Usage

my.parse.peaklist(mSetObj = NA, foldername = "upload")

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects).

foldername

Name of the folder containing the NMR or MS peak list files to read.

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Normalization

Description

This function performs row-wise normalization, transformation, and scaling of your metabolomic data.

Usage

Normalization(mSetObj, rowNorm, transNorm, scaleNorm, ref=NULL, ratio=FALSE, ratioNum=20)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

rowNorm

Select the option for row-wise normalization, "QuantileNorm" for Quantile Normalization, "CompNorm" for Normalization by a reference feature, "SumNorm" for Normalization to constant sum, "MedianNorm" for Normalization to sample median, and "SpecNorm" for Normalization by a sample-specific factor.

transNorm

Select option to transform the data, "LogNorm" for Log Normalization, and "CrNorm" for Cubic Root Transformation.

scaleNorm

Select option for scaling the data, "MeanCenter" for Mean Centering, "AutoNorm" for Autoscaling, "ParetoNorm" for Pareto Scaling, amd "RangeNorm" for Range Scaling.

ref

Input the name of the reference sample or the reference feature, use " " around the name.

ratio

This option is only for biomarker analysis.

ratioNum

Relevant only for biomarker analysis.

Author(s)

Jeff Xia [email protected], Jasmine Chong McGill University, Canada


Perform OPLS-DA permutation

Description

Orthogonal PLS-DA (from ropls) perform permutation, using training classification accuracy as indicator, for two or multi-groups

Usage

OPLSDA.Permut(mSetObj = NA, num = 100)

Arguments

mSetObj

Input name of the created mSet Object

num

Input the number of permutations, default is set to 100.

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Perform OPLS-DA

Description

Orthogonal PLS-DA (from ropls) Add reg (regression i.e. if class order matters)

Usage

OPLSR.Anal(mSetObj = NA, reg = FALSE)

Arguments

mSetObj

Input name of the created mSet Object

reg

Logical

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Return only the signicant comparison names

Description

Return only the signicant comparison names, used in higher function

Usage

parseFisher(fisher, cut.off)

Arguments

fisher

Input fisher object

cut.off

Numeric, set cut-off

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Return only the signicant comparison names

Description

Return only the signicant comparison names, used in higher function

Usage

parseTukey(tukey, cut.off)

Arguments

tukey

Input tukey output

cut.off

Input numeric cut-off

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Perform PCA analysis

Description

Perform PCA analysis, obtain variance explained, store item to PCA object

Usage

PCA.Anal(mSetObj = NA)

Arguments

mSetObj

Input name of the created mSet Object McGill University, Canada License: GNU GPL (>= 2)

Author(s)

Jeff Xia[email protected]


Rotate PCA analysis

Description

Rotate PCA analysis

Usage

PCA.Flip(mSetObj = NA, axisOpt)

Arguments

mSetObj

Input name of the created mSet Object

axisOpt

Input the axis option

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Obtain principal components into a matrix that has more variables than individuals

Description

X is a matrix that has as columns the compounds that were considered as variables in the PCA analysis. First we center the matrix by columns (Xoff) and then we obtain the eigenvalues and the eigenvectors of the matrix Xoff use the equivalences between the loadings and scores to obtain the solution

Usage

PCA.GENES(X)

Arguments

X

Input matrix that has as columns the compounds that were considered as variables in the PCA analysis

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Perform ASCA

Description

The ASCA algorithm was adapted from the ASCA-genes method (analysis of variance (ANOVA) simultaneous component analysis) by Maria Jose Nueda ([email protected]) and Ana Conesa ([email protected])

Usage

Perform.ASCA(mSetObj = NA, a = 1, b = 2, x = 2, res = 2)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

a

specify the number of components for facA

b

specify the number of components for facB

x

specify the number of components for interaction AB

res

specify the number of model residuals type is string, indicating the type of analysis "abc" separately "aab" facA joins with AB "bab" facB joins with AB

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Perform ASCA model validation by permutation

Description

Perform ASCA model validation by permutation we use Manly's unrestricted permutation of observations which esentially permutes the data over all cells in the designed experiment, then calculates the score for each main factor or interaction components. This will get the null distribution for all effects in one go

Usage

Perform.ASCA.permute(mSetObj=NA, perm.num)

Arguments

mSetObj

Input name of the created mSet Object

perm.num

Select the number of permutations, default is 20

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Perform permutation tests only for ROC Tester

Description

Perform permutation tests for the ROC Curve Based Model Creation and Evaluation module

Usage

Perform.Permut(mSetObj=NA, perf.measure, perm.num, propTraining = 2/3)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

perf.measure

Input the performance measure to rate the performance of the model, either the area under the ROC curve ("auroc") or the predictive accuracy ("accu")

perm.num

Input the number of permutations to perform

propTraining

Numeric, input the fraction of samples to set aside for training. Default is set to 2/3.

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Permutation

Description

Perform permutation, options to change number of cores used

Usage

Perform.permutation(perm.num, fun)

Arguments

perm.num

Numeric, input the number of permutations to perform

fun

Dummy function

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Perform Classical Univariate ROC

Description

Perform Classical Univariate ROC

Usage

Perform.UnivROC(mSetObj=NA, feat.nm, version, 
format="png", dpi=72, isAUC, isOpt, optMethod, isPartial, measure, cutoff)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

feat.nm

Input the name of the feature to perform univariate ROC analysis

version

image version mark, can be any character

format

Select the image format, png, of pdf.

dpi

Input the dpi. If the image format is pdf, users need not define the dpi. For png images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

isAUC

Logical, select T to compute the 95 percent confidence interval band and "F" to not

isOpt

Logical, show the optimal cutoff, T to show it and F to not

optMethod

Select the optimal cutoff by using either closest.topleft for closest to top-left corner or youden for farthest to the diagonal line (Youden)

isPartial

Logical, input T to calculate a partial ROC curve, and F to not

measure

Select the parameter to limit the calculation of the partial ROC curve, se for the X-axis (maximum false-positive rate) and sp for the Y-axis, representing the minimum true positive-rate

cutoff

Input the threshold to limit the calculation of the partial ROC curve, the number must be between 0 and 1.

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


PerformAdductMapping

Description

This function reads in the user's adduct list and saves it as a matrix.

Usage

PerformAdductMapping(mSetObj = NA, add.mode)

Arguments

mSetObj

Input the name of the created mSetObj object

add.mode

Adduct mode, positive or negative

Author(s)

Jasmine Chong, Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Perform approximate compound matches

Description

Given a query, perform approximate compound matching

Usage

PerformApproxMatch(mSetObj = NA, q, lipid)

Arguments

mSetObj

Input the name of the created mSetObj.

q

Input the q vector.

lipid

lipid, logical


Batch Effect Correction

Description

This function is designed to perform the batch effect correction

Usage

PerformBatchCorrection(
  mSetObj = NA,
  imgName = NULL,
  Method = NULL,
  center = NULL
)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input the name of the plot to create

Method

Batch effect correction method, default is "auto". Specific method, including "Combat", "WaveICA","EigenMS","QC_RLSC","ANCOVA","RUV_random","RUV_2","RUV_s","RUV_r","RUV_g","NOMIS" and "CCMN".

center

The center point of the batch effect correction, based on "QC" or "", which means correct to minimize the distance between batches.

Author(s)

Zhiqiang Pang, Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Perform compound mapping for integrative analysis methods

Description

Perform compound mapping

Usage

PerformCmpdMapping(mSetObj = NA, cmpdIDs, org, idType)

Arguments

mSetObj

Input name of the created mSet Object

cmpdIDs

Input the list of compound IDs

org

Input the organism code

idType

Input the ID type

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Map currency metabolites to KEGG & BioCyc

Description

This function maps the user selected list of compounds to its corresponding KEGG IDs and BioCyc IDs

Usage

PerformCurrencyMapping(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj object

Author(s)

Jasmine Chong, Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Perform Monte-Carlo Cross Validation (MCCV)

Description

Classification MCCV, aims to find the best feature subsets using default model parameters

Usage

PerformCV.explore(mSetObj, cls.method, rank.method="auroc", lvNum=2, propTraining=2/3)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

cls.method

Select the classification method, "rf" for random forest classification, "pls" for PLS-DA, and "svm" for support vector machine

rank.method

Select the ranking method, "rf" for random forest mean decrease accuracy, "fisher" for Fisher's univariate ranking based on area under the curve "auroc" for univariate ranking based on area under the curve, "tt" for T-test univariate ranking based on area under the curve, "pls" for partial least squares, and "svm" for support vector machine

lvNum

Input the number of latent variables to include in the analyis, only for PLS-DA classification

propTraining

Input the proportion of samples to use for training

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Perform MCCV for manually selected features

Description

MCCV for manually selected features (no additional feature selection)

Usage

PerformCV.test(mSetObj, method, lvNum, propTraining=2/3, nRuns=100)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

method

Select the classification method, "rf" for random forest classification, "pls" for PLS-DA, and "svm" for support vector machine

lvNum

Input the number of latent variables to include in the analyis, only for PLS-DA classification

propTraining

Input the proportion of samples to use for training, by default it is 2/3

nRuns

Input the number of MCCV runs, by default it is 100

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


PerformDataInspect

Description

PerformDataInspect is used to plot 2D/3D structure of the MS data

Usage

PerformDataInspect(
  datapath = NULL,
  rt.range = c(0, 0),
  mz.range = c(0, 0),
  dimension = "3D",
  res = 100
)

Arguments

datapath

data file path

rt.range

retention time range, unit is seconds

mz.range

m/z range

dimension

view dimension, canbe "2D" or "3D"

res

resolution number, higher of the number means higher resolution

Author(s)

Zhiqiang Pang


Perform ROI Extraction from raw MS data (PerformDataTrimming)

Description

This function performs the raw data trimming. This function will output an trimmed MSnExp file to memory or hardisk according to the choice of users must provide the data path for 'datapath', and optionally provide other corresponding parameters.

Usage

PerformDataTrimming(
  datapath,
  mode = "ssm",
  write = FALSE,
  mz,
  mzdiff,
  rt,
  rtdiff,
  rt.idx = 1/15,
  rmConts = TRUE,
  plot = TRUE,
  running.controller = NULL
)

Arguments

datapath

Character, the path of the raw MS data files' or folder's path (.mzXML, .CDF and .mzML) for parameters training.

mode

Character, mode for data trimming to select the chraracteristic peaks. Default is 'ssm'. Users could select random trimed according to mz value (mz_random) or RT value (rt_random). Besides, specific peaks at certain mz (mz_specific) or RT (rt_specific) could also be extracted. 'none' will not trim the data.

write

Logical, if true, will write the trimmed data to the directory 'trimmed' folder in the datapath. The data in memory will be kept.

mz

Numeric, mz value(s) for specific selection. Positive values means including (the values indicted) and negative value means excluding/removing.

mzdiff

Numeric, the deviation (ppm) of mz value(s).

rt

Numeric, rt value for specific selection. Positive values means including and negative value means excluding.

rtdiff

Numeric, the deviation (seconds) of rt value(s).

rt.idx

Numeric, the relative rt (retention time) range, from 0 to 1. 1 means all retention time will be retained, while 0 means none. Default is 1/15. If default rt.idx produce too few peaks, please consider increasing this value.

rmConts

LOgical, whether to exclude/remove the potential contamination for parameters optimization. Default is TRUE.

plot

Logical, if TRUE, will plot the chromatogram of the trimmed data.

running.controller

The resuming pipeline running controller. Optional. Don't need to define by hand.

Value

will return an mSet objects with extracted ROI

Author(s)

Zhiqiang Pang [email protected] Jeff Xia [email protected] Mcgill University License: GNU GPL (>= 2)


Perform detailed name match

Description

Given a query, perform compound matching.

Usage

PerformDetailMatch(mSetObj = NA, q)

Arguments

mSetObj

Input name of the created mSet Object.

q

Input the query.


Performs differential expression analysis on individual data

Description

This function performs DE analysis on individual data using the common matrix, which will be used/compared in later steps of the analysis (according to the p-value). The DE for each feature may be adjusted using the p-value.

Usage

PerformEachDEAnal(mSetObj = NA)

Arguments

mSetObj

Input name of the created mSet Object

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Perform integrated gene mapping

Description

Used for the pathinteg module

Usage

PerformGeneMapping(mSetObj = NA, geneIDs, org, idType)

Arguments

mSetObj

Input name of the created mSet Object

geneIDs

Input the list of gene IDs

org

Input the organism code

idType

Input the ID type


Perform normalization for individually-uploaded datasets for meta-analysis

Description

This function performs normalization of individuall-uploaded datasets prior to meta-analysis.

Usage

PerformIndNormalization(mSetObj = NA, dataName, norm.opt, auto.opt)

Arguments

mSetObj

Input name of the created mSet Object

dataName

Input the name of the individual dataset for normalization.

norm.opt

Performs log2 normalization "log", or no normalization "none".

auto.opt

Performs auto-scaling of data (1), or no (0).

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Perform integrative pathway analysis

Description

used for integrative analysis as well as general pathways analysis for meta-analysis results

Usage

PerformIntegPathwayAnalysis(mSetObj, topo="dc", enrich="hyper", 
libOpt="integ", integOpt="query")

Arguments

mSetObj

Input name of the created mSet Object

topo

Select the mode for topology analysis: Degree Centrality ("dc") measures the number of links that connect to a node (representing either a gene or metabolite) within a pathway; Closeness Centrality ("cc") measures the overall distance from a given node to all other nodes in a pathway; Betweenness Centrality ("bc")measures the number of shortest paths from all nodes to all the others that pass through a given node within a pathway.

enrich

Method to perform over-representation analysis (ORA) based on either hypergenometrics analysis ("hyper") or Fisher's exact method ("fisher").

libOpt

Select the different modes of pathways, either the gene-metabolite mode ("integ") which allows for joint-analysis and visualization of both significant genes and metabolites or the gene-centric ("genetic") and metabolite-centric mode ("metab") which allows users to identify enriched pathways driven by significant genes or metabolites, respectively.

integOpt

integOpt,default is "query"

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Performs KO enrichment analysis based on the KO01100 map

Description

This function performs KO enrichment analysis based on the KO01100 map and saves the .JSON file

Usage

PerformKOEnrichAnalysis_KO01100(mSetObj = NA, category, file.nm)

Arguments

mSetObj

Input name of the created mSet Object

category

Input the option to perform enrichment analysis, "pathway"

file.nm

Input name of file to save

Author(s)

Othman Soufan, Jeff Xia [email protected], [email protected] McGill University, Canada License: GNU GPL (>= 2)


Utility function for PerformKOEnrichAnalysis_KO01100

Description

Please note: only return hits in map KO01100

Usage

PerformKOEnrichAnalysis_List(mSetObj, file.nm)

Arguments

mSetObj

mSetObj object

file.nm

Input the file name


Perform differential expression analysis using Limma for individually-uploaded data.

Description

This function performs DE analysis of individually-uploaded data prior to meta-analysis.

Usage

PerformLimmaDE(mSetObj = NA, dataName, p.lvl = 0.1, fc.lvl = 0)

Arguments

mSetObj

Input name of the created mSet Object

dataName

Input the name of the individual dataset for normalization.

p.lvl

Numeric, input the p-value (FDR) cutoff.

fc.lvl

Numeric, input the fold-change (FC) cutoff.

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Utility function for PrepareKeggQueryJson geneIDs is text one string, need to make to vector

Description

Utility function for PrepareKeggQueryJson geneIDs is text one string, need to make to vector

Usage

PerformMapping_ko01100(inputIDs, type)

Arguments

inputIDs

Input list of IDs

type

Input the type of IDs


Timecourse analysis

Description

Adapted from the timecourse package by Yu Chuan Tai This method is only applicable for time-series, not for general case two/multiple factor analysis

Usage

performMB(mSetObj, topPerc)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

topPerc

select the cut-off, default is 10

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Meta-Analysis Method: Direct merging of datasets

Description

This function is one of three methods to perform meta-analysis. Direct merging of individual data into a mega-dataset results in an analysis of that mega-dataset as if the individual data were derived from the same experiment. This method thereby ignores any inherent bias and heterogeneity between the different data. Because of this, there exists several confounders such as different experimental protocols, technical platforms, and raw data processing procedures that can mask true underlying differences. It is therefore highly suggested that this approach be used only when individual data are very similar (i.e. from the same lab, same platform, without batch effects)."

Usage

PerformMetaMerge(mSetObj = NA, BHth = 0.05)

Arguments

mSetObj

Input name of the created mSet Object.

BHth

Numeric input to set the significance level. By default it is 0.05.

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


PerformMetaPSEA Function to perform peak set enrichment meta-analysis at either the empirical compound, compound level or pathway level.

Description

This is the main function that performs either the mummichog algorithm, GSEA, or both for peak set enrichment meta-analysis.

Usage

PerformMetaPSEA(
  mSetObj = NA,
  lib,
  libVersion,
  minLib = 3,
  permNum = 100,
  metaLevel = "pathway",
  combine.level = "pvalue",
  pval.method = "fisher",
  es.method = "fixed",
  rank.metric = "mean",
  mutual.feats = TRUE,
  pooled_cutoff = 0.05
)

Arguments

mSetObj

Input the name of the created mSetObj object.

lib

Input the name of the organism library, default is hsa_mfn.

libVersion

Input the version of the KEGG pathway libraries ("current" or "old").

minLib

numeric, default is 3

permNum

Numeric, input the number of permutations to perform. Default is 100.

metaLevel

Character, input whether the meta-analysis is at the empirical compound ("ec"), compound ("cpd"), or pathway level ("pathway").

combine.level

Character, input whether to combine p-values or pool the peaks.

pval.method

Character, input the method to perform p-value combination.

es.method

Character, input the method to perform effect-size meta-analysis.

rank.metric

Character, input how to calculate pre-ranking metric. "mean" to use the average, "min" to use the lowest score, "max" to use the highest score.

mutual.feats

mutual.feats, logical

pooled_cutoff

pooled_cutoff, numeric

Author(s)

Jasmine Chong, Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


PerformMirrorPlotting

Description

PerformMirrorPlotting

Usage

PerformMirrorPlotting(
  mSetObj = NA,
  fragDB_path = NA,
  peak_idx,
  sub_idx,
  interactive = T,
  ppm,
  dpi,
  format,
  width,
  height
)

Arguments

mSetObj

mSetObj

fragDB_path

Fragmentation database path

peak_idx

peak_idx

sub_idx

sub_idx

interactive

interactive or not

ppm

ppm

dpi

dpi

format

format

width

width

height

height

featurelabel

featurelabel

imageNM

imageNM


PerformMirrorPlottingWeb

Description

PerformMirrorPlottingWeb

Usage

PerformMirrorPlottingWeb(
  mSetObj = NA,
  fragDB_path,
  featurelabel,
  result_num,
  sub_idx,
  ppm,
  imageNM,
  dpi,
  format,
  width,
  height
)

Arguments

mSetObj

mSetObj

fragDB_path

Fragmentation database path

featurelabel

featurelabel

result_num

result_num

sub_idx

sub_idx

ppm

ppm

imageNM

imageNM

dpi

dpi

format

format

width

width

height

height


PerformMS1ResultsFormatting This function is used to format the results from other tools into the generic format of MetaboAnalystR Currently,we are supporting the compatibility for four commonly used open-source tools: MS-DIAL, MZmine, Asari and XCMS online The first parameter file_path should be a valid file of the result. User need to specify the type in the 2nd argument, type. This argument can be msdial, mzmine, asari and xcms Please note, if your original data does not contain meta information, you need to manually add them in the generated "metaboanalyst_input.csv" file The formatted file is 'sample in columns'.

Description

PerformMS1ResultsFormatting This function is used to format the results from other tools into the generic format of MetaboAnalystR Currently,we are supporting the compatibility for four commonly used open-source tools: MS-DIAL, MZmine, Asari and XCMS online The first parameter file_path should be a valid file of the result. User need to specify the type in the 2nd argument, type. This argument can be msdial, mzmine, asari and xcms Please note, if your original data does not contain meta information, you need to manually add them in the generated "metaboanalyst_input.csv" file The formatted file is 'sample in columns'.

Usage

PerformMS1ResultsFormatting(file_path, type, meta_data = NA)

Arguments

file_path
type
meta_data

this is path to a table containing two columns, the first column is the sample names and second column is the group information


PerformMS2ResultsFormatting This function is used to format the results from other tools into the generic format of MetaboAnalystR for functional analysis Currently,we are supporting the compatibility for four commonly used open-source tools: MS-FINDER, and SIRIUS The first parameter file_path should be a valid file of the result. User need to specify the type in the 2nd argument, type. This argument can be msfinder, or sirius The 3rd column

Description

PerformMS2ResultsFormatting This function is used to format the results from other tools into the generic format of MetaboAnalystR for functional analysis Currently,we are supporting the compatibility for four commonly used open-source tools: MS-FINDER, and SIRIUS The first parameter file_path should be a valid file of the result. User need to specify the type in the 2nd argument, type. This argument can be msfinder, or sirius The 3rd column

Usage

PerformMS2ResultsFormatting(file_path, type, MS1_features_list = NA)

Arguments

file_path

file path of NS2 file

type

type, can be msfinder or sirius

MS1_features_list

this is feature list used functional analysis


performMS2searchBatch

Description

performMS2searchBatch

Usage

performMS2searchBatch(
  mSetObj = NA,
  ppm1 = 10,
  ppm2 = 25,
  dbpath = "",
  frgdbpath = "",
  database = "all",
  similarity_meth = 0,
  precMZ = NA,
  sim_cutoff = 30,
  ionMode = "positive",
  unit1 = "ppm",
  unit2 = "ppm",
  ncores = 1
)

Arguments

mSetObj

mSetObj

ppm1

ppm value for ms1

ppm2

ppm value for ms2

dbpath

database path

frgdbpath

fragmentation database path

database

database option

similarity_meth

similarity computing method

precMZ

mz of precursor

sim_cutoff

filtration cutoff of similarity score. will be enabled soon.

ionMode

ion mode, for ESI+, is should be 1. for ESI-, it should be 0

unit1

ppm or da for ms1 matching

unit2

ppm or da for ms2

ncores

number of cpu cores used to search

Author(s)

Zhiqiang Pang


performMS2searchSingle

Description

performMS2searchSingle

Usage

performMS2searchSingle(
  mSetObj = NA,
  ppm1 = 10,
  ppm2 = 25,
  dbpath = "",
  frgdbpath = "",
  database = "all",
  similarity_meth = 0,
  precMZ = NA,
  sim_cutoff = 30,
  ionMode = "positive",
  unit1 = "ppm",
  unit2 = "ppm"
)

Arguments

mSetObj

mSetObj

ppm1

ppm value for ms1

ppm2

ppm value for ms2

dbpath

database path

frgdbpath

fragmentation database path

database

database option

similarity_meth

similarity computing method

precMZ

mz of precursor

sim_cutoff

filtration cutoff of similarity score. will be enabled soon.

ionMode

ion mode, for ESI+, is should be 1. for ESI-, it should be 0

unit1

ppm or da for ms1 matching

unit2

ppm or da for ms2


Perform multiple name matches

Description

Given a query, performs compound name matching.

Usage

PerformMultiMatch(mSetObj = NA, q, lipid)

Arguments

mSetObj

Input name of the created mSet Object.

q

Input the query.

lipid

lipid, logical


Perform Parameters Optimization

Description

This function is used to optimize the critical parameters of peak picking and alignment for the following data processing. It utilizes the trimed data and the internal instrument-specific parameters. Parallel computing will be performed. The number of cores user want to use could be specified.

Usage

PerformParamsOptimization(
  mSet,
  param = NULL,
  method = "DoE",
  ncore = 4,
  running.controller = NULL
)

Arguments

mSet

mSet object, usually generated by 'PerformROIExtraction' or 'PerformDataTrimming' here.

param

List, Parameters defined by 'SetPeakParam' function.

method

Character, method of parameters optimization, including "DoE' only. Default is "DoE". Other method is under development.

ncore

Numeric, CPU threads number used to perform the parallel based optimization. If thers is memory issue, please reduce the 'ncore' used here. For default, 2/3 CPU threads of total will be used.

running.controller

The resuming pipeline running controller. Optional. Don't need to define by hand.

Details

PerformParamsOptimization

Value

will a parameter object can be used for following processing

Author(s)

Zhiqiang Pang [email protected] Jeff Xia [email protected] Mcgill University License: GNU GPL (>= 2)


PerformPeakProfiling

Description

PerformPeakProfiling

Usage

PerformPeakProfiling(mSet, Params, plotSettings, ncore)

Arguments

mSet

mSet

Params

Params

plotSettings

plotSettings

ncore

number of cores


Perform power profiling

Description

Perform power profiling of data

Usage

PerformPowerProfiling(mSetObj=NA, fdr.lvl, smplSize)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

fdr.lvl

Specify the false-discovery rate level.

smplSize

Specify the maximum sample size, the number must be between 60-1000.

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Function to perform peak set enrichment analysis

Description

This is the main function that performs either the mummichog algorithm, GSEA, or both for peak set enrichment analysis.

Usage

PerformPSEA(mSetObj=NA, lib, libVersion, minLib, permNum = 100)

Arguments

mSetObj

Input the name of the created mSetObj object.

lib

Input the name of the organism library, default is hsa_mfn.

libVersion

Input the version of the KEGG pathway libraries ("current" or "old").

minLib

Numeric, input the minimum number of metabolites needed to consider the pathway or metabolite set.

permNum

Numeric, input the number of permutations to perform. Default is 100.

Author(s)

Jasmine Chong, Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Meta-Analysis Method: Combining p-values

Description

This function is one of three methods to perform meta-analysis. Here, p-values are combined using either the Fisher's method or the Stouffer's method.

Usage

PerformPvalCombination(mSetObj = NA, method = "stouffer", BHth = 0.05)

Arguments

mSetObj

Input name of the created mSet Object.

method

Method of p-value combination. By default it is "stouffer", else it is "fisher".

BHth

Numeric input to set the significance level. By default it is 0.05.

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Perform ROI Extraction from raw MS data (PerformDataTrimming)

Description

This function performs the raw data trimming. This function will output an trimmed MSnExp file to memory or hardisk according to the choice of users must provide the data path for 'datapath', and optionally provide other corresponding parameters.

Usage

PerformROIExtraction(
  datapath,
  mode = "ssm",
  write = FALSE,
  mz,
  mzdiff,
  rt,
  rtdiff,
  rt.idx = 1/15,
  rmConts = TRUE,
  plot = TRUE,
  running.controller = NULL
)

Arguments

datapath

Character, the path of the raw MS data files' or folder's path (.mzXML, .CDF and .mzML) for parameters training.

mode

Character, mode for data trimming to select the chraracteristic peaks. Default is 'ssm'. Users could select random trimed according to mz value (mz_random) or RT value (rt_random). Besides, specific peaks at certain mz (mz_specific) or RT (rt_specific) could also be extracted. 'none' will not trim the data.

write

Logical, if true, will write the trimmed data to the directory 'trimmed' folder in the datapath. The data in memory will be kept.

mz

Numeric, mz value(s) for specific selection. Positive values means including (the values indicted) and negative value means excluding/removing.

mzdiff

Numeric, the deviation (ppm) of mz value(s).

rt

Numeric, rt value for specific selection. Positive values means including and negative value means excluding.

rtdiff

Numeric, the deviation (seconds) of rt value(s).

rt.idx

Numeric, the relative rt (retention time) range, from 0 to 1. 1 means all retention time will be retained, while 0 means none. Default is 1/15. If default rt.idx produce too few peaks, please consider increasing this value.

rmConts

LOgical, whether to exclude/remove the potential contamination for parameters optimization. Default is TRUE.

plot

Logical, if TRUE, will plot the chromatogram of the trimmed data.

running.controller

The resuming pipeline running controller. Optional. Don't need to define by hand.

Value

will return an mSet objects with extracted ROI

Author(s)

Zhiqiang Pang [email protected] Jeff Xia [email protected] Mcgill University License: GNU GPL (>= 2)


Signal Drift Correction

Description

This function is designed to perform the signal drift correction. Batch effect and signal drift correction will be performed with QC-RLSC method in this function.

Usage

PerformSignalDriftCorrection(mSetObj = NA, imgName = NULL)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input the name of the plot to create

Author(s)

Zhiqiang Pang, Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Meta-Analysis Method: Vote Counting

Description

This function is one of three methods to perform meta-analysis. Here, significant features are selected based on a selected criteria (i.e. an adjusted p-value <0.05 and the same direction of FC) for each dataset. The votes are then calculated for each feature by counting the total of number of times a feature is significant across all included datasets. However, this method is statistically inefficient and should be considered the last resort in situations where other methods to perform meta-analysis cannot be applied.

Usage

PerformVoteCounting(mSetObj = NA, BHth = 0.05, minVote)

Arguments

mSetObj

Input name of the created mSet Object.

BHth

Numeric input to set the significance level. By default it is 0.05.

minVote

Numeric input to set the minimum vote-count.

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Batch Distance Plotting

Description

Scatter sample trend comparison between all sample of different batches

Usage

plot_dist(mSetObj = NA, imgName = "dist", format = "png", width = NA, dpi = 72)

Arguments

mSetObj

mSetObj

imgName

imgName

format

format

width

width

dpi

dpi


Plot results of permutation tests

Description

Plot results of permutation tests

Usage

Plot.Permutation(mSetObj=NA, imgName, format="png", dpi=72)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

imgName

Input a name for the plot

format

elect the image format, "png", of "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Sample Trend Scatter

Description

Scatter sample trend comparison between all sample of different batches

Usage

Plot.sampletrend(
  mSetObj,
  imgName,
  format = "png",
  dpi = 72,
  width = NA,
  method
)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 600.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

method

method of correction

Author(s)

Zhiqiang Pang [email protected], Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot classification performance using different features for Multi-Biomarker

Description

Plot of the accuracy of classification with an increasing number of features.

Usage

PlotAccuracy(mSetObj=NA, imgName, format="png", dpi=72)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

imgName

Input a name for the plot

format

Select the image format, "png", of "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot ANOVA

Description

Plot ANOVA

Usage

PlotANOVA(mSetObj=NA, imgName, format="png", dpi=72, width=NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot Venn diagram of ANOVA results

Description

Plot Venn diagram of ANOVA results

Usage

PlotANOVA2(mSetObj, imgName, format="png", dpi=72, width=NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot ASCA permutation

Description

Plot plsda classification performance using different components

Usage

PlotASCA.Permutation(mSetObj=NA, imgName, format="png", dpi=72, width=NA)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot the important variables for each factor

Description

Plot the important variables for each factor

Usage

PlotAscaImpVar(mSetObj=NA, imgName, format, dpi, width=NA, type)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

type

select model a, b, or ab

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot ASCA interaction plots

Description

Plot ASCA interaction plots

Usage

PlotASCAInteraction(mSetObj=NA, imgName, format="png", dpi=72, colorBW=FALSE, width=NA)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

colorBW

Logical, use black and white (TRUE) or colors (FALSE)

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot score plots of each ASCA model for component 1 against time

Description

Plot score plots of each ASCA model for component 1 against time

Usage

PlotASCAModel(mSetObj=NA, imgName, format="png", dpi=72, width=NA, type, colorBW=FALSE)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

imgName

Input a name for the ASCA score plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

type

select model a or b

colorBW

Logical, use black/white coloring (T) or not (F)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot scree plots for each model in ASCA

Description

Plot scree plots for each model in ASCA

Usage

PlotASCAModelScree(mSetObj, imgName, format="png", dpi=72, width=NA)

Arguments

mSetObj

Input name of the created mSet Object.

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot K-means summary PCA plot

Description

Plot K-means summary PCA plot

Usage

PlotClustPCA(
  mSetObj,
  imgName,
  format = "png",
  dpi = 72,
  width = NA,
  colpal = "default",
  anal = "km",
  labels = "T"
)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

colpal

palete of color

anal

analysis type

labels

labels to show, default is "T"

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot compound summary change to use dataSet$proc instead of dataSet$orig in case of too many NAs

Description

Plot compound summary change to use dataSet$proc instead of dataSet$orig in case of too many NAs

Usage

PlotCmpdSummary(
  mSetObj = NA,
  cmpdNm,
  meta = "NA",
  meta2 = "NA",
  count = 0,
  format = "png",
  dpi = 72,
  width = NA
)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

cmpdNm

Input the name of the compound to plot

meta

meta is "NA"

meta2

only applicable for multifac module, secondary factor

count

img count number

format

Input the format of the image to create

dpi

Input the dpi of the image to create

width

Input the width of the image to create

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot Compound View

Description

Plots a bar-graph of selected compound over groups

Usage

PlotCmpdView(mSetObj=NA, cmpdNm, format="png", dpi=72, width=NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

cmpdNm

Input a name for the compound

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot the compound concentration data compared to the reference concentration range

Description

Plot the compound concentration data compared to the reference concentration range

Usage

PlotConcRange(mSetObj, nm, format="png", dpi=72, width=NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

nm

of the input compound

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Pattern hunter, correlation plot

Description

Plot correlation

Usage

PlotCorr(
  mSetObj = NA,
  imgName,
  searchType = "feature",
  format = "png",
  dpi = 72,
  width = NA
)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

searchType

searchType, default is "feature"

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Pattern hunter, corr heatmap

Description

Plot correlation heatmap

Usage

PlotCorrHeatMap(
  mSetObj = NA,
  imgName,
  format = "png",
  dpi = 72,
  width = NA,
  target,
  cor.method,
  colors,
  fix.col,
  no.clst,
  fz,
  unit,
  corrCutoff = 0
)

Arguments

mSetObj

Input name of the created mSet Object.

imgName

Input the name of the image to create

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

target

Input "row" to select features, or "col" to select samples.

cor.method

Indicate the correlation method, 'pearson', 'spearman', or 'kendall'.

colors

Indicate the colors for the heatmap, "bwm" for default, "gbr" for red/green, "heat" for heat colors, "topo" for topo colors, and "gray" for gray scale.

fix.col

Logical, fix colors (TRUE) or not (FALSE).

no.clst

Logical, indicate if the correlations should be clustered (TRUE) or not (FALSE).

corrCutoff

set corrCutoff McGill University, Canada License: GNU GPL (>= 2)

viewOpt

Indicate "overview" to get an overview of the heatmap, and "detail" to get a detailed view of the heatmap.

Author(s)

Jeff Xia[email protected]


Plot detailed ROC

Description

Plot detailed ROC

Usage

PlotDetailROC(mSetObj = NA, imgName, thresh, sp, se, dpi = 72, format = "png")

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

imgName

Input a name for the plot

thresh

Input the threshold

sp

Specificity

se

Sensitivity

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

format

Select the image format, "png", or "pdf".

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot EBAM

Description

Plot EBAM

Usage

PlotEBAM.Cmpd(mSetObj=NA, imgName, format, dpi, width)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot MSEA Dot Plot

Description

Dot plot of enrichment analysis results.

Usage

PlotEnrichDotPlot(
  mSetObj = NA,
  enrichType = "ora",
  imgName,
  format = "png",
  dpi = 72,
  width = NA
)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

enrichType

Input whether the enrichment analysis was over-respresentation analysis (ora) or quantitative enrichment analysis (qea).

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


PlotEnrichNet.Overview

Description

Used in higher functions, the color is based on p values

Usage

PlotEnrichNet.Overview(folds, pvals, layoutOpt = layout.fruchterman.reingold)

Arguments

folds

Input fold-change for bar plot

pvals

Input p-values for bar plot

layoutOpt

Input the layout option, default is set to layout.fruchterman.reingold

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create a pie chart for compound classes

Description

This function creates a pie-chart for compound classes in the enrichment analysis if the library is based on chemical ontologies.

Usage

PlotEnrichPieChart(
  mSetObj = NA,
  enrichType,
  imgName,
  format = "png",
  dpi = 72,
  width = 8,
  maxClass = 15,
  colPal = "Set1"
)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

enrichType

enrichType

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Numeric, input the width, the default is 8.

maxClass

Numeric, input the maximum number of lipid classes to include in the pie-chart. By default this is set to 15.

colPal

Character, input the preferred R Color Brewer palette to be used for the pie chart. By default this is set to "Set1".


Plot fold change

Description

Plot fold change analysis

Usage

PlotFC(mSetObj=NA, imgName, format="png", dpi=72, width=NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot Dendrogram

Description

Dendogram

Usage

PlotHCTree(
  mSetObj = NA,
  imgName,
  format = "png",
  dpi = 72,
  width = NA,
  smplDist,
  clstDist
)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

smplDist

Method to calculate sample distance

clstDist

Method to calculate clustering distance

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Create Heat Map Plot

Description

Plot a heatmap based on results from t-tests/ANOVA, VIP or randomforest

Usage

PlotHeatMap(
  mSetObj = NA,
  imgName,
  format = "png",
  dpi = 72,
  width = NA,
  dataOpt,
  scaleOpt,
  smplDist,
  clstDist,
  palette,
  fzCol,
  fzRow,
  fzAnno,
  annoPer,
  unitCol,
  unitRow,
  rowV = T,
  colV = T,
  var.inx = NULL,
  border = T,
  grp.ave = F,
  show.legend = T,
  show.annot.legend = T,
  showColnm = T,
  showRownm = T,
  maxFeature = 2000
)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

dataOpt

Set data options

scaleOpt

Set the image scale

smplDist

Input the sample distance method

clstDist

Input the clustering distance method

palette

Input color palette choice

rowV

Default is set to T

colV

Default is set to T

var.inx

Default is set to NA

border

Indicate whether or not to show cell-borders, default is set to T

grp.ave

Logical, default is set to F

viewOpt

Set heatmap options, default is set to "detail"

metadata

metadata

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot heatmap visualization for time-series data

Description

Plot heatmap visualization for time-series data

Usage

PlotHeatMap2(
  mSetObj = NA,
  imgName,
  dataOpt = "norm",
  scaleOpt = "row",
  format = "png",
  dpi = 72,
  width = NA,
  smplDist = "pearson",
  clstDist = "average",
  colorGradient = "npj",
  fzCol,
  fzRow,
  fzAnno,
  annoPer,
  unitCol,
  unitRow,
  rankingMethod = "mean",
  topFeature = 2000,
  useTopFeature = F,
  drawBorder = T,
  show.legend = T,
  show.annot.legend = T,
  showColnm = T,
  showRownm = F,
  maxFeature = 2000
)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

imgName

Input a name for the plot

dataOpt

dataOpt, default is "norm"

scaleOpt

scaleOpt

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

smplDist

Select distance measure: euclidean, pearson, or minkowski

clstDist

Select clustering algorithm: ward, average, complete, single

colorGradient

Select heatmap colors: bwm, gray

rankingMethod

rankingMethod

topFeature

topFeature

useTopFeature

Use significant features only: F or T (default false)

drawBorder

Show cell borders: F or T (default F)

viewOpt

Select overview or detailed view: overview or detail

includeRowNames

includeRowNames, logical

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot selected compounds by their percentage frequency

Description

Plot the important variables of single biomarker model ranked by order of importance

Usage

PlotImpBiomarkers(mSetObj=NA, imgName, format="png", dpi=72, 
mdl.inx, measure = "freq", feat.num = 15)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

imgName

Input a name for the plot

format

elect the image format, "png", of "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

mdl.inx

Model index, -1 selects the model with the best AUC, input 1-6 to view the important features of one of the top six models

measure

Choose to rank features by the frequency of being selected "freq", or the mean importance measure "mean"

feat.num

Input the number of features to include in the plot, by default it is 15.

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot PLS important variables,

Description

Plot PLS important variables, BHan: added bgcolor parameter for B/W color

Usage

PlotImpVar(mSetObj = NA, imp.vec, xlbl, feat.num = 15, color.BW = FALSE)

Arguments

mSetObj

Input name of the created mSet Object

imp.vec

Input the vector of important variables

xlbl

Input the x-label

feat.num

Numeric, set the feature numbers, default is set to 15

color.BW

Use black-white for plot (T) or colors (F)

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot PLS important variables,

Description

Plot PLS important variables, BHan: added bgcolor parameter for B/W color

Usage

PlotImpVarMeta(
  mSetObj = NA,
  imp.vec,
  xlbl,
  feat.num = 15,
  color.BW = FALSE,
  type = "meta"
)

Arguments

mSetObj

Input name of the created mSet Object

imp.vec

Input the vector of important variables

xlbl

Input the x-label

feat.num

Numeric, set the feature numbers, default is set to 15

color.BW

Use black-white for plot (T) or colors (F)

type

type, default is "type"

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot an igraph object and return the node information (position and labels)

Description

Plot an igraph object and return the node information (position and labels) Used in a higher function

Usage

PlotInmexGraph(
  mSetObj,
  pathName,
  g,
  width = NA,
  height = NA,
  bg.color = NULL,
  line.color = NULL,
  format = "png",
  dpi = NULL
)

Arguments

mSetObj

Input name of the created mSet Object

pathName

Input the pathway name

g

Input the graph

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

height

Input the height of the graph to create

bg.color

Set the background color, default is set to NULL

line.color

Set the line color, default is set to NULL

format

image format

dpi

dpi of the image

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot integrated methods pathway analysis

Description

Only update the background info for matched node

Usage

PlotInmexPath(
  mSetObj = NA,
  pathName,
  width = NA,
  height = NA,
  format = "png",
  dpi = NULL
)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

pathName

Input the Name of the pathway to plot.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

height

Input the height of the image to create.

format

format of the image

dpi

dpi, dpi of the image

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot metabolome pathway

Description

Plot KEGG pathway graph

Usage

PlotKEGGPath(
  mSetObj = NA,
  pathName,
  width = NA,
  height = NA,
  format = "png",
  dpi = NULL
)

Arguments

mSetObj

Input name of the created mSet Object

pathName

Input the name of the selected pathway

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

height

Input the height of the created plot.

format

format of the image.

dpi

dpi of the image.

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot K-means analysis

Description

Plot K-means analysis

Usage

PlotKmeans(
  mSetObj = NA,
  imgName,
  format = "png",
  dpi = 72,
  width = NA,
  colpal = "default",
  facet = FALSE
)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

colpal

Character, input "default" to use the default ggplot color scheme or "colblind" to use the color-blind friendly palette.

facet

logical, TRUE to plot in multiple facets

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot MB Time Profile

Description

Plot MB Time Profile

Usage

PlotMBTimeProfile(
  mSetObj = NA,
  cmpdNm,
  version,
  format = "png",
  dpi = 72,
  width = NA
)

Arguments

mSetObj

Input name of the created mSet Object

cmpdNm

Input the name of the compound

version

image mark

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Generate correlation heatmap for metadata

Description

Plot correlation coefficients between metadata

Usage

PlotMetaCorrHeatmap(
  mSetObj = NA,
  cor.opt = "pearson",
  imgName,
  format = "png",
  dpi = 96,
  width = NA
)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

cor.opt

Meethod for computing correlation coefficient

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Generate heatmaps for metadata table

Description

Plot a heatmap showing clustering patterns among the metadata

Usage

PlotMetaHeatmap(
  mSetObj = NA,
  clustSelOpt = "both",
  smplDist = "pearson",
  clstDist = "average",
  colorGradient = "bwm",
  includeRowNames = T,
  imgName,
  format = "png",
  dpi = 96,
  width = NA
)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

viewOpt

high-level summary or plotting the names inside cell

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot KEGG pathway

Description

Plot KEGG pathway

Usage

PlotMetpaPath(
  mSetObj = NA,
  pathName,
  width = NA,
  height = NA,
  format = "png",
  dpi = NULL
)

Arguments

mSetObj

Input name of the created mSet Object

pathName

Input the name of the selected KEGG pathway

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

height

height value for the image.

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


plotMirror

Description

plotMirror

Usage

plotMirror(
  mSetObj = NA,
  featureidx = 1,
  precMZ,
  ppm,
  imageNM = "",
  dpi = 300,
  format = "png",
  width = 8,
  height = 8,
  cutoff_relative = 5
)

Arguments

mSetObj

mSetObj

featureidx

index of feature

precMZ

mz of precursor

ppm

ppm for ms2 fragment matching mz error

imageNM

image name

dpi

dpi of images

format

format of images

width

width of images

height

height of images

cutoff_relative

cutoff of relative intensity to filter out

Author(s)

Zhiqiang Pang


Plot MSEA overview

Description

Barplot height is enrichment fold change color is based on p values, used in higher functions

Usage

PlotMSEA.Overview(folds, pvals)

Arguments

folds

Input the fold-change values

pvals

Input the p-values

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


plotMSfeature

Description

plotMSfeature is used to plot MS feature stats for different groups

Usage

plotMSfeature(FeatureNM, format = "png", dpi = 72, width = NA)

Arguments

FeatureNM

FeatureNM

format

format

dpi

dpi

width

width

Author(s)

Zhiqiang Pang


Plot compound summary for multi-linear regression tool

Description

Plot compound summary for multi-linear regression tool

Usage

PlotMultiFacCmpdSummary(
  mSetObj = NA,
  cmpdNm,
  meta,
  meta2,
  version,
  format = "png",
  dpi = 72,
  width = NA
)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

cmpdNm

Input the name of the compound to plot

meta

Input the metadata to visualize

version

version

format

Input the format of the image to create

dpi

Input the dpi of the image to create

width

Input the width of the image to create

Author(s)

Jessica Ewald[email protected] McGill University, Canada License: GPL-3 License


Two plot summary plot: Feature View of before and after normalization

Description

For each plot, the top is a box plot, bottom is a density plot

Usage

PlotNormSummary(mSetObj, imgName, format, dpi, width)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

Author(s)

Jeff Xia [email protected], Jasmine Chong McGill University, Canada


PlotOPLS.Imp OPLS VIP plotting function

Description

PlotOPLS.Imp OPLS VIP plotting function

Usage

PlotOPLS.Imp(
  mSetObj = NA,
  imgName,
  format = "png",
  dpi = 72,
  width = NA,
  type = "vip",
  feat.nm = "tscore",
  feat.num = 15,
  color.BW = FALSE
)

Arguments

mSetObj

mSetObj objects generated from last step

imgName

image name

format

image format, can be "png", "jpg", "tiff", "pdf" and "svg"

dpi

numeric, dpi number

width

numeric, width number

type

analysis type, can be "vip" only

feat.nm

feature name, should be "tscore" for now

feat.num

feature number

color.BW

color information


Plot OPLS

Description

Plot OPLS

Usage

PlotOPLS.MDL(mSetObj = NA, imgName, format = "png", dpi = 72, width = NA)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.


Plot OPLS-DA permutation

Description

Orthogonal PLS-DA (from ropls) perform permutation, using training classification accuracy as indicator, for two or multi-groups

Usage

PlotOPLS.Permutation(
  mSetObj = NA,
  imgName,
  format = "png",
  dpi = 72,
  width = NA
)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


S-plot for OPLS-DA

Description

Orthogonal PLS-DA (from ropls) S-plot for important features from OPLS-DA

Usage

PlotOPLS.Splot(
  mSetObj = NA,
  imgName,
  plotType = "all",
  format = "png",
  dpi = 72,
  width = NA
)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

plotType

plotType for the image, can be "all" or "custom"

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create OPLS-DA score plot

Description

Orthogonal PLS-DA (from ropls) score plot

Usage

PlotOPLS2DScore(
  mSetObj = NA,
  imgName,
  format = "png",
  dpi = 72,
  width = NA,
  inx1,
  inx2,
  reg = 0.95,
  show = 1,
  grey.scale = 0,
  cex.opt = "na"
)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

inx1

Numeric, indicate the number of the principal component for the x-axis of the loading plot.

inx2

Numeric, indicate the number of the principal component for the y-axis of the loading plot.

reg

Numeric

show

Show variable labels, 1 or O

grey.scale

Numeric, indicate grey-scale, 0 for no, and 1 for yes

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot over-representation analysis (ORA)

Description

Plot over-representation analysis (ORA)

Usage

PlotORA(mSetObj=NA, imgName, imgOpt, format="png", dpi=72, width=NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

imgName

Input a name for the plot

imgOpt

"net"

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot a scatterplot (circle) overview of the matched pathways

Description

x axis is the pathway impact factor y axis is the p value (from ORA or globaltest) return the circle information

Usage

PlotPathSummary(
  mSetObj = NA,
  show.grid,
  imgName,
  format = "png",
  dpi = 72,
  width = NA,
  xlim = NA,
  ylim = NA
)

Arguments

mSetObj

Input name of the created mSet Object

show.grid

logical, show grid or not

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5.

xlim

limit of x axis

ylim

limit of y axis

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


PlotPathwayMetaAnalysis

Description

Function to create summary plot of MS Peaks to Paths meta-analysis at the pathway level. This function creates a summary plot of the MS Peaks to Paths meta-analysis at the pathway level. The plot can either be a heatmap or a network, both of which can be made interactive. NETWORK: The size of the nodes in the network correspond to the number of studies in which that pathway was significant. The color of the nodes correspond to the meta-p-value for each pathway, with (default coloring) red being the most significant and yellow the least.

Usage

PlotPathwayMetaAnalysis(
  mSetObj = NA,
  imgName,
  plotType = "heatmap",
  heatmap_colorType = "brewer",
  heatmap_palette = "RdYlBu",
  heatmap_interactive = FALSE,
  heatmap_square = TRUE,
  heatmap_allPaths = TRUE,
  heatmap_npaths = 25,
  heatmap_vertical = TRUE,
  heatmap_fontSize = 9,
  pvalCutoff = 0.05,
  overlap = 0.25,
  networkType = "static",
  layout = "kk",
  net_palette = "YlOrRd",
  netTextSize = 2.5,
  netPlotSize = 7.5,
  bubble_interactive = FALSE,
  bubbleMaxPaths = 15,
  bubble_colorType = "brewer",
  bubble_palette = "RdBu",
  bubbleFontSize = 9,
  bubblePlotSize = 7,
  format = "png",
  width = 7,
  height = 5,
  dpi = 300
)

Arguments

mSetObj

Input the name of the created mSetObj object.

imgName

name of image.

plotType

Use "heatmap" to create a heatmap summary, "network" to create a network summary, or "bubble" to create a bubble plot summary of the meta-analysis results.

heatmap_colorType

Character, "brewer" for R Color Brewer scales or "viridis" for viridis color scales. Used for creating the heatmap color scheme.

heatmap_palette

Character, input the preferred color palette according to R Color Brewer or viridis (e.g. "RdBu").

heatmap_interactive

Boolean. FALSE to create a non-interactive plot and TRUE for plotly generated interactive plot.

heatmap_square

Boolean. TRUE for the heatmap to be squares versus rectangles (FALSE).

heatmap_allPaths

Boolean. TRUE to use all paths when plotting the heatmap. FALSE to use a subset of paths, number defined in npaths.

heatmap_npaths

Numeric. The number of pathways to subset the pathway results.

heatmap_vertical

Boolean. TRUE, heatmap plot will be vertical. FALSE, heatmap plot will be horizontal.

heatmap_fontSize

Numeric, input the preferred font size to be used in the heatmap plot.

pvalCutoff

The size of the nodes in the network correspond to the number of studies in which that pathway was significant. This pvalCutoff (Numeric) is thus used to determine whether or not a pathway was found to be significant in each individual study.

overlap

Numeric, this number is used to create edges between the nodes. By default it is set to 0.25, meaning that if 2 pathways (nodes) share 25 the same compounds/empirical compounds, they will be connected by a node.

networkType

Character, "static" to create a static image or "interactive" to create an interactive network saved as an html in your working directory.

layout

Character, layout from ggraph. "kk" for the spring-based algorithm by Kamada and Kawai as default. "drl" for force directed algorithm from the DrL toolbox. "lgl" for Large Graph Layout. "fr" for force-directed of Fruchterman and Reingold.

net_palette

Character, input the color code for the nodes in the network. Default is "YlOrRd". Uses the hcl palettes from the grDevices. Use hcl.pals() to view the name of all available palettes.

netTextSize

Numeric, input the preferred font size to be used in the network plot.

netPlotSize

Numeric, input the preferred dimensions (in inches) of the network to be saved.

bubble_interactive

logical

bubbleMaxPaths

maximum number of pathways

bubble_colorType

Character, "brewer" for R Color Brewer scales or "viridis" for viridis color scales. Used for creating the bubble plot color scheme.

bubble_palette

Character, use two/three colors max if using R ColorBrewer palettes for pleasing looking plots.

bubbleFontSize

font size of the bubble plot

bubblePlotSize

plot size of the bubble plot

format

format of the image

width

width of the image

height

height of the image

dpi

dpi of the image

Author(s)

Jasmine Chong, Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Scatter plot colored by different batches

Description

Scatter plot colored by different batches

Usage

PlotPCA.overview(
  mSetObj,
  imgName,
  format = "png",
  dpi = 72,
  width = NA,
  method
)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 600.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

method

method of correction

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create 2D PCA score plot

Description

Rotate PCA analysis

Usage

PlotPCA2DScore(mSetObj=NA, imgName, format="png", 
dpi=72, width=NA, pcx, pcy, reg = 0.95, show=1, grey.scale = 0)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

pcx

Specify the principal component on the x-axis

pcy

Specify the principal component on the y-axis

reg

Numeric, input a number between 0 and 1, 0.95 will display the 95 percent confidence regions, and 0 will not.

show

Display sample names, 1 = show names, 0 = do not show names.

grey.scale

Use grey-scale colors, 1 = grey-scale, 0 = not grey-scale.

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


PlotPCA3DLoading

Description

PlotPCA3DLoading

Usage

PlotPCA3DLoading(mSetObj = NA, imgName, format = "json", inx1, inx2, inx3)

Arguments

mSetObj

mSetObj

imgName

imgName

format

format

inx1

inx1

inx2

inx2

inx3

inx3


Create 3D PCA score plot

Description

Rotate PCA analysis

Usage

PlotPCA3DScore(mSetObj=NA, imgName, format="json", inx1, inx2, inx3)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

inx1

Numeric, indicate the number of the principal component for the x-axis of the loading plot.

inx2

Numeric, indicate the number of the principal component for the y-axis of the loading plot.

inx3

Numeric, indicate the number of the principal component for the z-axis of the loading plot.

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Create 3D PCA score plot

Description

This function creates both a static 3D PCA score plot as well as an interactive 3D PCA score plot using the plotly R package. The 3D PCA score plot is stored in the mSetObj (mSetObj$imgSet$pca.3d). To view the plot, if your mSetObj is named mSet, type "mSet$imgSet$pca.3d" inro your R console, and the 3D plot will appear.

Usage

PlotPCA3DScoreImg(mSetObj=NA, imgName, 
format="png", dpi=72, width=NA, inx1, inx2, inx3, angl)

Arguments

mSetObj

Input name of the created mSet Object.

imgName

Input a name for the plot.

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

inx1

Numeric, indicate the number of the principal component for the x-axis of the loading plot.

inx2

Numeric, indicate the number of the principal component for the y-axis of the loading plot.

inx3

Numeric, indicate the number of the principal component for the z-axis of the loading plot.

angl

Input the angle

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Create PCA Biplot, set xpd = T to plot outside margin

Description

Rotate PCA analysis

Usage

PlotPCABiplot(mSetObj=NA, imgName, format="png", dpi=72, width=NA, inx1, inx2)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

inx1

Numeric, indicate the number of the principal component for the x-axis of the loading plot.

inx2

Numeric, indicate the number of the principal component for the y-axis of the loading plot.

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot PCA loadings and also set up the matrix for display

Description

Rotate PCA analysis

Usage

PlotPCALoading(mSetObj=NA, imgName, format="png", dpi=72, width=NA, inx1, inx2)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

inx1

Numeric, indicate the number of the principal component for the x-axis of the loading plot.

inx2

Numeric, indicate the number of the principal component for the y-axis of the loading plot.

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot PCA pair summary, format image in png, tiff, pdf, ps, svg

Description

Rotate PCA analysis

Usage

PlotPCAPairSummary(mSetObj=NA, imgName, format="png", dpi=72, width=NA, pc.num)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

pc.num

Numeric, input a number to indicate the number of principal components to display in the pairwise score plot.

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot PCA scree plot

Description

Rotate PCA analysis

Usage

PlotPCAScree(mSetObj=NA, imgName, format="png", dpi=72, width=NA, scree.num)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

scree.num

Numeric, input a number to indicate the number of principal components to display in the scree plot.

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


PlotPeaks2Paths

Description

Plots either the original mummichog or GSEA results.

Usage

PlotPeaks2Paths(
  mSetObj = NA,
  imgName = "",
  format = "png",
  dpi = 72,
  width = 9,
  labels = "default",
  num_annot = 5,
  interactive = F
)

Arguments

mSetObj

Input the name of the created mSetObj object

imgName

Input a name for the plot

format

Character, input the format of the image to create.

dpi

Numeric, input the dpi of the image to create.

width

Numeric, input the width of the image to create.

labels

Character, indicate if the plot should be labeled. By default it is set to "default", and the 5 top-ranked pathways per each algorithm will be plotted. Users can adjust the number of pathways to be annotated per pathway using the "num_annot" parameter.

num_annot

number of annotations for top plotting

Author(s)

Jasmine Chong, Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot PLS-DA classification performance using different components

Description

Plot plsda classification performance using different components

Usage

PlotPLS.Classification(
  mSetObj = NA,
  imgName,
  format = "png",
  dpi = 72,
  width = NA
)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot PLS important features

Description

Plot PLS important features, BHan: added bgcolor parameter for B/W color

Usage

PlotPLS.Imp(
  mSetObj = NA,
  imgName,
  format = "png",
  dpi = 72,
  width = NA,
  type,
  feat.nm,
  feat.num,
  color.BW = FALSE
)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

type

Indicate the type variables of importance to use, "vip" to use VIp scores, or "type" for coefficients

feat.nm

Feature name

feat.num

Feature numbers

color.BW

Logical, true to use black and white, or false to not

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot PLS-DA classification performance using different components, permutation

Description

Plot plsda classification performance using different components

Usage

PlotPLS.Permutation(
  mSetObj = NA,
  imgName,
  format = "png",
  dpi = 72,
  width = NA
)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot PLS score plot

Description

Plot PLS score plot

Usage

PlotPLS2DScore(
  mSetObj = NA,
  imgName,
  format = "png",
  dpi = 72,
  width = NA,
  inx1,
  inx2,
  reg = 0.95,
  show = 1,
  grey.scale = 0,
  cex.opt = "na"
)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

inx1

Numeric, indicate the number of the principal component for the x-axis of the loading plot.

inx2

Numeric, indicate the number of the principal component for the y-axis of the loading plot.

reg

Numeric, default is 0.95

show

Show labels, 1 or 0

grey.scale

Numeric, use a grey scale (0) or not (1)

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


PlotPLS3DLoading

Description

PlotPLS3DLoading

Usage

PlotPLS3DLoading(mSetObj = NA, imgName, format = "json", inx1, inx2, inx3)

Arguments

mSetObj

mSetObj

imgName

imgName

format

format

inx1

inx1

inx2

inx2

inx3

inx3


Plot PLS 3D score plot

Description

Plot PLS 3D score plot

Usage

PlotPLS3DScore(mSetObj = NA, imgName, format = "json", inx1, inx2, inx3)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

inx1

Numeric, indicate the number of the principal component for the x-axis of the loading plot.

inx2

Numeric, indicate the number of the principal component for the y-axis of the loading plot.

inx3

Numeric, indicate the number of the principal component for the z-axis of the loading plot.

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot PLS 3D score plot

Description

This function creates two 3D PLS-DA score plots, the first is static for Analysis Report purposes, as well as an interactive 3D plot using the plotly R package. The 3D score plot is saved in the created mSetObj (mSetObj$imgSet$plsda.3d). To view the score plot, if the name of your mSetObj is mSet, enter "mSet$imgSet$plsda.3d" to view the interactive score plot.

Usage

PlotPLS3DScoreImg(
  mSetObj = NA,
  imgName,
  format = "png",
  dpi = 72,
  width = NA,
  inx1,
  inx2,
  inx3,
  angl
)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

inx1

Numeric, indicate the number of the principal component for the x-axis of the loading plot.

inx2

Numeric, indicate the number of the principal component for the y-axis of the loading plot.

inx3

Numeric, indicate the number of the principal component for the z-axis of the loading plot.

angl

Input the angle

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot PLS loading plot, also set the loading matrix for display

Description

Plot PLS loading plot, also set the loading matrix for display

Usage

PlotPLSLoading(
  mSetObj = NA,
  imgName,
  format = "png",
  dpi = 72,
  width = NA,
  inx1,
  inx2
)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

inx1

Numeric, indicate the number of the principal component for the x-axis of the loading plot.

inx2

Numeric, indicate the number of the principal component for the y-axis of the loading plot.

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot PLS pairwise summary

Description

Plot PLS pairwise summary

Usage

PlotPLSPairSummary(
  mSetObj = NA,
  imgName,
  format = "png",
  dpi = 72,
  width = NA,
  pc.num
)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

pc.num

Numeric, indicate the number of principal components

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot power profile

Description

Plot power profile, specifying FDR level and sample size. It will return the image as well as the predicted power at various sample sizes.

Usage

PlotPowerProfile(mSetObj=NA, fdr.lvl, smplSize, imgName, format, dpi, width)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

fdr.lvl

Specify the false-discovery rate level.

smplSize

Specify the maximum sample size, the number must be between 60-1000.

imgName

Specify the name to save the image as.

format

Specify the format of the image to save it as, either "png" or "pdf".

dpi

Specify the dots-per-inch (dpi). By default it is 72, for publications the recommended dpi is 300.

width

Specify the width of the image. NA specifies a width of 9, 0 specifies a width of 7, otherwise input a chosen width.

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot power statistics

Description

Create plot for power statistics

Usage

PlotPowerStat(mSetObj, imgName, format="png", dpi=72, width=NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

imgName

Specify the name to save the image as.

format

Specify the format of the image to save it as, either "png" or "pdf"

dpi

Specify the dots-per-inch (dpi). By default it is 72, for publications the recommended dpi is 300.

width

Specify the width of the image. NA or 0 specifies a width of 10, otherwise input a chosen width.

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot a summary view of the classification result

Description

Plot of predicted class probabilities. On the x-axis is the proability, and the y-axis is the index of each predicted sample based on the probility. The samples are turned into separations at the x-axis. This plot can be created for multivariate ROC curve analysis using SVM, PLS, and RandomForest. Please note that sometimes, not all samples will be tested, instead they will be plotted at the 0.5 neutral line.

Usage

PlotProbView(mSetObj=NA, imgName, format="png", dpi=72, mdl.inx, show, showPred)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

imgName

Input a name for the plot

format

Select the image format, "png", of "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

mdl.inx

Model index, 0 means to compare all models, -1 means to use the best model, input 1-6 to plot a ROC curve for one of the top six models

show

1 or 0, if 1, label samples classified to the wrong groups

showPred

Show predicted samples

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot a summary view of the classification result of tester prediction

Description

Plot of predicted class probabilities. On the x-axis is the proability, and the y-axis is the index of each predicted sample based on the probility. The samples are turned into separations at the x-axis. This plot can be created for multivariate ROC curve analysis using SVM, PLS, and RandomForest. Please note that sometimes, not all samples will be tested, instead they will be plotted at the 0.5 neutral line.

Usage

PlotProbViewTest(mSetObj=NA, imgName, format="png", dpi=72, mdl.inx, show, showPred)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

imgName

Input a name for the plot

format

Select the image format, "png", of "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

mdl.inx

Model index, 0 means to compare all models, -1 means to use the best model, input 1-6 to plot a ROC curve for one of the top six models

show

1 or 0, if 1, label samples classified to the wrong groups

showPred

Show predicted samples

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot the variable across time points (x)

Description

Colored by experimental conditions, used in higher function

Usage

plotProfile(mSetObj = NA, varName)

Arguments

mSetObj

Input name of the created mSet Object

varName

Input the name of the variable

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


PlotPSEAIntegPaths

Description

Plots both the original mummichog and the GSEA results by combining p-values using the Fisher's method (sumlog).

Usage

PlotPSEAIntegPaths(
  mSetObj = NA,
  imgName = "",
  format = "png",
  dpi = 72,
  width = 9,
  labels = "default",
  labels.x = 5,
  labels.y = 5,
  scale.axis = TRUE,
  interactive = F
)

Arguments

mSetObj

Input the name of the created mSetObj object

imgName

Input a name for the plot

format

Character, input the format of the image to create.

dpi

Numeric, input the dpi of the image to create.

width

Numeric, input the width of the image to create.

labels

Character, indicate if the plot should be labeled. By default it is set to "default", and the 5 top-ranked pathways per each algorithm will be plotted. Users can adjust the number of pathways to be annotated per pathway using the "labels.x" and "labels.y" parameters. Users can set this to "none" for no annotations, or "all" to annotate all pathways.

labels.x

Numeric, indicate the number of top-ranked pathways using the fGSEA algorithm to annotate on the plot.

labels.y

Numeric, indicate the number of top-ranked pathways using the original mummichog algorithm to annotate on the plot.

scale.axis

logical, TRUE to scale

Author(s)

Jasmine Chong, Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


View individual compounds related to a given metabolite set

Description

View individual compounds related to a given metabolite set Functions for various plots for enrichment analysis

Usage

PlotQEA.MetSet(mSetObj=NA, setNM, format="png", dpi=72, width=NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

setNM

Input the name of the metabolite set

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot QEA overview

Description

Plot QEA overview

Usage

PlotQEA.Overview(mSetObj=NA, imgName, imgOpt, format="png", dpi=72, width=NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

imgName

Input a name for the plot

imgOpt

"net"

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot Random Forest

Description

Random Forest plot

Usage

PlotRF.Classify(mSetObj, imgName, format, dpi, width)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot Random Forest

Description

Random Forest plot

Usage

PlotRF.ClassifyMeta(mSetObj, imgName, format, dpi, width, type)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

type

plotting type, default is "meta".

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot Random Forest outliers

Description

Random Forest plot of outliers

Usage

PlotRF.Outlier(mSetObj=NA, imgName, format="png", dpi=72, width=NA)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot Random Forest variable importance

Description

Random Forest plot of variable importance ranked by MeanDecreaseAccuracy

Usage

PlotRF.VIP(mSetObj=NA, imgName, format, dpi, width)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot Random Forest variable importance

Description

Random Forest plot of variable importance ranked by MeanDecreaseAccuracy

Usage

PlotRF.VIPMeta(mSetObj=NA, imgName, format, dpi, width, type)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

type

type of image

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot ROC

Description

Pred and auroc are lists containing predictions and labels from different cross-validations

Usage

PlotROC(mSetObj=NA, imgName, format="png", dpi=72, mdl.inx, 
avg.method, show.conf, show.holdout, focus="fpr", cutoff = 1.0)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

imgName

Input a name for the plot

format

Select the image format, "png", of "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

mdl.inx

Model index, 0 means to compare all models, input 1-6 to plot a ROC curve for one of the top six models

avg.method

Input the method to compute the average ROC curve, either "threshold", "vertical" or "horizontal"

show.conf

Logical, if 1, show confidence interval, if 0 do not show

show.holdout

Logical, if 1, show the ROC curve for hold-out validation, if 0 do not show

focus

"fpr"

cutoff

Input the threshold to limit the calculation of the ROC curve, the number must be between 0 and 1.

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot ROC for the logistic regression model

Description

Plot ROC for the logistic regression model

Usage

PlotROC.LRmodel(
  mSetObj = NA,
  imgName,
  format = "png",
  dpi = 72,
  show.conf = FALSE,
  sp.bin = 0.01
)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

show.conf

Logical, show confidence intervals

sp.bin

Numeric, default is set to 0.01.

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot ROC for the ROC Curve Based Model Creation and Evaluation module

Description

Plot the ROC curve of the biomarker model created using a user-selected subset of features. Pred and auroc are lists containing predictions and labels from different cross-validations.

Usage

PlotROCTest(mSetObj=NA, imgName, format="png", 
dpi=72, mdl.inx, avg.method, show.conf, show.holdout, focus="fpr", cutoff = 1.0)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

imgName

Input a name for the plot

format

Select the image format, "png", of "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

mdl.inx

Model index, 0 means to compare all models, input 1-6 to plot a ROC curve for one of the top six models

avg.method

Input the method to compute the average ROC curve, either "threshold", "vertical" or "horizontal"

show.conf

Logical, if 1, show confidence interval, if 0 do not show

show.holdout

Logical, if 1, show the ROC curve for hold-out validation, if 0 do not show

focus

"fpr"

cutoff

Input the threshold to limit the calculation of the ROC curve, the number must be between 0 and 1.

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot a boxplot view of a selected compound

Description

Plots a boxplot of the selected compound's concentration between the groups.

Usage

PlotRocUnivBoxPlot(
  mSetObj,
  feat.nm,
  version,
  format = "png",
  dpi = 72,
  isOpt,
  isQuery
)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

feat.nm

Input the name of the selected compound.

version

version mark for image name

format

Select the image format, "png", of "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

isOpt

logical

isQuery

logical

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Recursive Support Vector Machine (R-SVM) plot

Description

Plot recursive SVM classification

Usage

PlotRSVM.Classification(mSetObj, imgName, format, dpi, width)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Recursive Support Vector Machine (R-SVM) plot of important variables

Description

Plot recursive SVM variables of importance if too many, plot top 15

Usage

PlotRSVM.Cmpd(mSetObj=NA, imgName, format="png", dpi=72, width=NA)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot SAM

Description

Plot SAM with positive and negative metabolite sets

Usage

PlotSAM.Cmpd(mSetObj = NA, imgName, format = "png", dpi = 72, width = NA)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot SAM Delta Plot

Description

Plot SAM Delta Plot (FDR)

Usage

PlotSAM.FDR(mSetObj = NA, imgName, format = "png", dpi = 72, width = NA)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Two plot summary plot: Sample View of before and after normalization

Description

For each plot, the top is a density plot and the bottom is a box plot.

Usage

PlotSampleNormSummary(mSetObj=NA, imgName, format="png", dpi=72, width=NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

imgName

Input a name for the plot

format

Select the image format, "png", of "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

Author(s)

Jeff Xia [email protected], Jasmine Chong McGill University, Canada


Create a box-plot of a feature's expression pattern across the different datasets

Description

This function plots a box-plot of the expression pattern of a user-selected feature across the different datasets included in meta-analysis.

Usage

PlotSelectedFeature(mSetObj = NA, gene.id, format = "png", dpi = 72)

Arguments

mSetObj

Input name of the created mSet Object.

gene.id

Input the name of the selected feature.

format

format, in "png" etc.

dpi

dpi value for the image.

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Supporting function for plotting important variables for each factor

Description

Supporting function for plotting important variables for each factor note, by control xpd to plot legend outside the plotting area without using layout

Usage

PlotSigVar(x, y, xline, yline, title)

Arguments

x

Input the X variable

y

Input the Y variable

xline

Input the xline

yline

Input the yline

title

Input the title

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


plotSingleTIC

Description

plotSingleTIC is used to plot single TIC

Usage

plotSingleTIC(filename, imageNumber, format = "png", dpi = 72, width = NA)

Arguments

filename

filename

imageNumber

imageNumber

format

format

dpi

dpi

width

width

Author(s)

Zhiqiang Pang


SOM Plot

Description

Plot SOM map for less than 20 clusters

Usage

PlotSOM(
  mSetObj = NA,
  imgName,
  format = "png",
  dpi = 72,
  width = NA,
  colpal = "default",
  facet = TRUE
)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

colpal

Character, input "default" to use the default ggplot color scheme or "colblind" to use the color-blind friendly palette.

facet

logical

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Score Plot SPLS-DA

Description

Sparse PLS-DA (from mixOmics) score plot

Usage

PlotSPLS2DScore(
  mSetObj = NA,
  imgName,
  format = "png",
  dpi = 72,
  width = NA,
  inx1,
  inx2,
  reg = 0.95,
  show = 1,
  grey.scale = 0,
  cex.opt = "na"
)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

inx1

Numeric, indicate the number of the principal component for the x-axis of the loading plot.

inx2

Numeric, indicate the number of the principal component for the y-axis of the loading plot.

reg

Numeric, between 1 and 0

show

Numeric, 1 or 0

grey.scale

Numeric, use grey-scale, 0 for no, and 1 for yes.

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


PlotSPLS3DLoading

Description

PlotSPLS3DLoading

Usage

PlotSPLS3DLoading(mSetObj = NA, imgName, format = "json", inx1, inx2, inx3)

Arguments

mSetObj

mSetObj

imgName

imgName

format

format

inx1

inx1

inx2

inx2

inx3

inx3


3D SPLS-DA score plot

Description

Sparse PLS-DA (from mixOmics) 3D score plot

Usage

PlotSPLS3DScore(
  mSetObj = NA,
  imgName,
  format = "json",
  inx1 = 1,
  inx2 = 2,
  inx3 = 3
)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

inx1

Numeric, indicate the number of the principal component for the x-axis of the loading plot.

inx2

Numeric, indicate the number of the principal component for the y-axis of the loading plot.

inx3

Numeric, indicate the number of the principal component for the z-axis of the loading plot.

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot sPLS-DA 3D score plot

Description

This function creates two 3D sPLS-DA score plots, the first is static for Analysis Report purposes, as well as an interactive 3D plot using the plotly R package. The 3D score plot is saved in the created mSetObj (mSetObj$imgSet$splsda.3d). To view the score plot, if the name of your mSetObj is mSet, enter "mSet$imgSet$splsda.3d" to view the interactive score plot.

This function creates two 3D sPLS-DA score plots, the first is static for Analysis Report purposes, as well as an interactive 3D plot using the plotly R package. The 3D score plot is saved in the created mSetObj (mSetObj$imgSet$splsda.3d). To view the score plot, if the name of your mSetObj is mSet, enter "mSet$imgSet$splsda.3d" to view the interactive score plot.

Usage

PlotSPLS3DScoreImg(
  mSetObj = NA,
  imgName,
  format = "png",
  dpi = 72,
  width = NA,
  inx1,
  inx2,
  inx3,
  angl
)

PlotSPLS3DScoreImg(
  mSetObj = NA,
  imgName,
  format = "png",
  dpi = 72,
  width = NA,
  inx1,
  inx2,
  inx3,
  angl
)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

inx1

Numeric, indicate the number of the principal component for the x-axis of the loading plot.

inx2

Numeric, indicate the number of the principal component for the y-axis of the loading plot.

inx3

Numeric, indicate the number of the principal component for the z-axis of the loading plot.

angl

Input the angle

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Create SPLS-DA classification plot

Description

Sparse PLS-DA (from mixOmics) plot of classification performance using different components

Usage

PlotSPLSDA.Classification(
  mSetObj = NA,
  imgName,
  format = "png",
  dpi = 72,
  width = NA
)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create SPLS-DA loading plot

Description

Sparse PLS-DA (from mixOmics) loading plot

Usage

PlotSPLSLoading(
  mSetObj = NA,
  imgName,
  format = "png",
  dpi = 72,
  width = NA,
  inx,
  viewOpt = "detail"
)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

inx

Input the model index

viewOpt

Detailed view "detail"

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot SPLS-DA

Description

Sparse PLS-DA (from mixOmics) pairwise summary plot

Usage

PlotSPLSPairSummary(
  mSetObj = NA,
  imgName,
  format = "png",
  dpi = 72,
  width = NA,
  pc.num
)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

pc.num

Numeric, indicate the number of principle components

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create high resolution static HeatMap for download only

Description

'@param #same as PlotCorrHeatMap

Usage

PlotStaticCorrHeatMap(
  mSetObj = NA,
  imgName,
  format = "png",
  dpi = 72,
  width = NA,
  target,
  cor.method,
  colors,
  viewOpt,
  fix.col,
  no.clst,
  corrCutoff = 0
)

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Create high resolution static HeatMap for download only

Description

'@param #same as PlotHeatMap

Usage

PlotStaticHeatMap(
  mSetObj = NA,
  imgName,
  format = "png",
  dpi = 72,
  width = NA,
  dataOpt,
  scaleOpt,
  smplDist,
  clstDist,
  palette,
  fzCol,
  fzRow,
  viewOpt = "detail",
  rowV = T,
  colV = T,
  var.inx = NULL,
  border = T,
  grp.ave = F,
  show.legend = T,
  show.annot.legend = T,
  includeRowNames = T
)

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Create high resolution static HeatMap for download only

Description

'@param #same as PlotHeatMap2

Usage

PlotStaticHeatMap2(
  mSetObj = NA,
  imgName,
  dataOpt = "norm",
  scaleOpt = "row",
  format = "png",
  dpi = 72,
  width = NA,
  smplDist = "pearson",
  clstDist = "average",
  colorGradient = "bwm",
  fzCol,
  fzRow,
  viewOpt = "overview",
  rankingMethod = "mean",
  topFeature = 2000,
  useTopFeature = F,
  drawBorder = T,
  show.legend = T,
  show.annot.legend = T,
  includeRowNames = T
)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create high resolution static HeatMap for download only

Description

Plot a heatmap showing clustering patterns among the metadata

Usage

PlotStaticMetaHeatmap(
  mSetObj = NA,
  viewOpt = "detailed",
  clustSelOpt = "both",
  smplDist = "pearson",
  clstDist = "average",
  colorGradient = "bwm",
  includeRowNames = T,
  imgName,
  format = "png",
  dpi = 96,
  width = NA
)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

viewOpt

high-level summary or plotting the names inside cell

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Create Sub Heat Map Plot

Description

Plot a sub heatmap based on results from t-tests/ANOVA, VIP or randomforest

Usage

PlotSubHeatMap(
  mSetObj = NA,
  imgName,
  format = "png",
  dpi = 72,
  width = NA,
  dataOpt,
  scaleOpt,
  smplDist,
  clstDist,
  palette,
  fzCol,
  fzRow,
  fzAnno,
  annoPer,
  unitCol,
  unitRow,
  method.nm,
  top.num,
  rowV = T,
  colV = T,
  border = T,
  grp.ave = F,
  show.legend = T,
  show.annot.legend = T,
  showColnm = T,
  showRownm = T,
  viewOpt,
  download = F
)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

dataOpt

Set data options

scaleOpt

Set the image scale

smplDist

Input the sample distance method

clstDist

Input the clustering distance method

palette

Input color palette choice

method.nm

Input the method for sub-heat map

top.num

Input the top number

rowV

Default is set to T

colV

Default is set to T

border

Indicate whether or not to show cell-borders, default is set to T

grp.ave

Logical, default is set to F

viewOpt

Set heatmap options, default is set to "detail"

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot classification performance using different features for Biomarker Tester

Description

Plot of the accuracy of classification with an increasing number of features.

Usage

PlotTestAccuracy(mSetObj=NA, imgName, format="png", dpi=72)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

imgName

Input a name for the plot

format

Select the image format, "png", of "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Plot t-test

Description

Plot t-test

Usage

PlotTT(mSetObj=NA, imgName, format="png", dpi=72, width=NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

imgName

Input a name for the plot

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Create volcano plot

Description

For labelling interesting points, it is defined by the following rules: need to be signficant (sig.inx) and or 2. top 5 p, or 2. top 5 left, or 3. top 5 right.

Usage

PlotVolcano(mSetObj=NA, imgName, plotLbl, plotTheme, format="png", dpi=72, width=NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

imgName

Input a name for the plot

plotLbl

Logical, plot labels, 1 for yes and 0 for no.

plotTheme

plotTheme, numeric, canbe 0, 1 or 2

format

Select the image format, "png", or "pdf".

dpi

Input the dpi. If the image format is "pdf", users need not define the dpi. For "png" images, the default dpi is 72. It is suggested that for high-resolution images, select a dpi of 300.

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


PlotXIC

Description

PlotXIC is used to plot both MS XIC/EIC features of different group and samples

Usage

PlotXIC(featureNum, format = "png", dpi = 72, width = NA)

Arguments

featureNum

featureNum

format

format

dpi

dpi

width

width

Author(s)

Zhiqiang Pang


PLS-DA classification and feature selection

Description

PLS-DA classification and feature selection

Usage

PLSDA.CV(
  mSetObj = NA,
  cvOpt = "loo",
  foldNum = 5,
  compNum = GetDefaultPLSCVComp(mSetObj),
  choice = "Q2",
  segments = 10
)

Arguments

mSetObj

Input name of the created mSet Object

compNum

GetDefaultPLSCVComp()

choice

Input the choice, by default it is Q2

methodName

Logical, by default set to TRUE

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Perform PLS-DA permutation

Description

Perform PLS-DA permutation using training classification accuracy as indicator, for two or multi-groups

Usage

PLSDA.Permut(mSetObj = NA, num = 100, type = "accu")

Arguments

mSetObj

Input name of the created mSet Object

num

Numeric, input the number of permutations

type

Type of accuracy, if "accu" indicate prediction accuracy, else "sep" is separation distance

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


PLS analysis using oscorespls (Orthogonal scores algorithm) so that VIP can be calculated note: the VIP is calculated only after PLSDA-CV is performed to determine the best # of comp. used for VIP

Description

PLS analysis using oscorespls

Usage

PLSR.Anal(mSetObj = NA, reg = FALSE)

Arguments

mSetObj

Input name of the created mSet Object

reg

Logical

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Get predicted class probability

Description

Get predicted class probability

Usage

Predict.class(x.train, y.train, x.test, clsMethod = "pls", lvNum, imp.out = F)

Arguments

x.train

Input the x training samples

y.train

Input the y training samples

x.test

Input the x testing samples

clsMethod

Se the classification method, default is set to pls

lvNum

Input the number of levels

imp.out

Logical, set to F by default

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Prepare integrated data

Description

Used for the pathinteg module.

Usage

PrepareIntegData(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)


Prepare user's query for mapping KEGG Global Metabolic Network

Description

This function prepares the user's data for the KEGG Global Metabolic Network

Usage

PrepareKeggQueryJson(mSetObj = NA)

Arguments

mSetObj

Input name of the created mSet Object

Author(s)

Othman Soufan, Jeff Xia [email protected], [email protected] McGill University, Canada License: GNU GPL (>= 2)


PrepareMetaPath

Description

PrepareMetaPath

Usage

PrepareMetaPath(
  mSetObj = NA,
  mode = "negative",
  ppm = 30,
  version = "v2",
  pcutoff = 0.05,
  rt.type = "seconds",
  dataName,
  dataName2
)

Arguments

mSetObj

mSetObj

mode

ion mode, can be "positive" or "negative"

ppm

mass error, default is 30

version

mummichog version, can be "v1" or "v2"

pcutoff

p value cut-off, default is 0.05

rt.type

character, retention time type, can be "minutes" or "seconds"

dataName

file name 1 with absolute path

dataName2

file name 2 with absolute path or "null"

Author(s)

Jeff Xia[email protected] Zhiqiang Pang[email protected] McGill University, Canada License: GNU GPL (>= 2)


Prepare data for network exploration

Description

Function for the network explorer module, prepares user's data for network exploration.

Usage

PrepareNetworkData(mSetObj = NA)

Arguments

mSetObj

Input name of the created mSet Object


Create report of analyses

Description

Report generation using Sweave Note: most analyses were already performed, only need to embed the results to the right place without rerunning the whole analysis through Sweave. Only some auxilliary info (i.e. time, version etc need to run in R through Sweave

Usage

PreparePDFReport(mSetObj = NA, usrName)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

usrName

Input the name of the user

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


PreparePeakTable4PSEA

Description

PreparePeakTable4PSEA

Usage

PreparePeakTable4PSEA(mSetObj = NA)

Arguments

mSetObj

mSet Objective from previous step

Author(s)

Zhiqiang Pang, Jeff Xia


Prepare report for permutation tests

Description

Function to prepare a report for permutation tests, used in higher functions

Usage

PreparePermResult(perm.vec)

Arguments

perm.vec

Input permutation vector

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Prepare data for normalization

Description

Function should always be initialized (new or overwrite previous prenorm object).

Usage

PreparePrenormData(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)


Prepare data for ROC analysis

Description

Prepare data for ROC analysis

Usage

PrepareROCData(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


ROC with CI for AUC

Description

ROC with CI for AUC

Usage

PrepareROCDetails(mSetObj = NA, feat.nm)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

feat.nm

Input the feature name

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Prepare data for Upset diagram

Description

Prepare data for Upset diagram

Usage

PrepareUpsetData(mSetObj = NA, fileNm)

Arguments

mSetObj

Input name of the created mSet Object

fileNm

json file name to save


processMSMSupload

Description

processMSMSupload

Usage

processMSMSupload(mSetObj = NA, spectrum)

Arguments

mSetObj

mSetObj

spectrum

spectrum for uploading

Author(s)

Zhiqiang Pang


Rank features based on different importance measures

Description

Ranks features based on various importance measures, return imp.vec which contains the importance measures of unordered features

Usage

RankFeatures(x.in, y.in, method, lvNum)

Arguments

x.in

Input the X features

y.in

Input the Y features

method

Input the method

lvNum

Input the number of levels

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Data I/O for batch effect checking

Description

Read multiple user uploaded CSV data one by one format: row, col

Usage

Read.BatchDataBC(mSetObj = NA, filePath, format, label, missingEstimate)

Arguments

mSetObj

Input name of the created mSet Object

filePath

Input the path to the batch files

format

Input the format of the batch files

label

Input the label-type of the files

missingEstimate

Approach to estimate the missing values

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Data I/O for batch effect checking

Description

Read peak data tale. format: row, col

Usage

Read.BatchDataTB(mSetObj = NA, filePath, format, missingEstimate)

Arguments

mSetObj

Input name of the created mSet Object

filePath

Input the path to the batch files

format

Input the format of the batch files

missingEstimate

Approach to estimate the missing values

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Read an mzTab tab separated file from the passed in file. Adapted from: https://github.com/lifs-tools/rmzTab-m/blob/master/R/MzTabReader.r

Description

Read an mzTab tab separated file from the passed in file. Adapted from: https://github.com/lifs-tools/rmzTab-m/blob/master/R/MzTabReader.r

Usage

Read.mzTab(mSetObj = NA, filename, identifier = "name")

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects).

filename

The name of the mzTab file to parse.

identifier

The identifier to be used when the table is parsed. Use "name" to use the chemical_name, "mass" to use the theoretical_neutral_mass and "sml_id" to use the SML_ID. If the number of missing name and mass entries is greater than 90 then the SML_ID will be used.


Read peak list files

Description

This function reads peak list files and fills the data into a dataSet object. For NMR peak lists, the input should be formatted as two-columns containing numeric values (ppm, int). Further, this function will change ppm to mz, and add a dummy 'rt'. For MS peak data, the lists can be formatted as two-columns (mz, int), in which case the function will add a dummy 'rt', or the lists can be formatted as three-columns (mz, rt, int).

Usage

Read.PeakList(mSetObj=NA, foldername)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects).

foldername

Name of the folder containing the NMR or MS peak list files to read.

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Constructor to read uploaded user files into the mummichog object

Description

This function handles reading in CSV or TXT files and filling in the mSet object for mummichog analysis. It makes sure that all necessary columns are present.

Usage

Read.PeakListData(mSetObj=NA, filename = NA, meta.anal = FALSE, method = "pvalue")

Arguments

mSetObj

Input the name of the created mSetObj.

filename

Input the path name for the CSV/TXT files to read.

meta.anal

Logical, TRUE if data will be used for meta-analysis.

method

Input the type of statistical scores included in the mummichog input. "pvalue" for p-values, "es" for effect-sizes, and "both" for both p-values and effect-sizes.

Author(s)

Jasmine Chong, Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Data I/O for signal drift checking

Description

Read peak data tale. format: row, col

Usage

Read.SignalDriftData(mSetObj = NA, filePath, format)

Arguments

mSetObj

Input name of the created mSet Object

filePath

Input the path to the batch files

format

Input the format of the batch files

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Read.TextData Constructor to read uploaded CSV or TXT files into the dataSet object

Description

This function handles reading in CSV or TXT files and filling in the dataSet object created using "InitDataObjects".

Usage

Read.TextData(
  mSetObj = NA,
  filePath,
  format = "rowu",
  lbl.type = "disc",
  nmdr = FALSE
)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects).

filePath

Input the path name for the CSV/TXT files to read.

format

Specify if samples are paired and in rows (rowp), unpaired and in rows (rowu), in columns and paired (colp), or in columns and unpaired (colu).

lbl.type

Specify the data label type, either categorical (disc) or continuous (cont).

nmdr

Boolean. Default set to FALSE (data is uploaded by the user and not fetched through an API call to the Metabolomics Workbench).

Author(s)

Jeff Xia [email protected], Jasmine Chong McGill University, Canada License: GNU GPL (>= 2)


Read.TextDataTs

Description

Read.TextDataTs is used to read metabolomics data for co-vairiate analysis

Usage

Read.TextDataTs(mSetObj = NA, filePath, format = "rowu")

Arguments

mSetObj

metaboanalyst object, initialized by InitDataObjects("pktable", "mf", FALSE)

filePath

file path of data

format

format of data table, can be "rowu" or "colu"


Read in individual data

Description

This function determines reads in user's individual data for meta-analysis.

Usage

ReadIndData(mSetObj = NA, dataName, format = "colu")

Arguments

mSetObj

Input name of the created mSet Object

dataName

Name of inputted dataset.

format

Specify if samples are paired and in rows (rowp), unpaired and in rows (rowu), in columns and paired (colp), or in columns and unpaired (colu).

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


ReadMetaData

Description

ReadMetaData

Usage

ReadMetaData(mSetObj = NA, metafilename)

Arguments

mSetObj

metaboanalyst object, initialized by InitDataObjects("pktable", "mf", FALSE)

metafilename

file path of data


ReadMetaPathTable

Description

ReadMetaPathTable

Usage

ReadMetaPathTable(mSetObj = NA, dataNM, dataFormat, dataType)

Arguments

mSetObj

mSetObj

dataNM

file name with absolute path

dataFormat

data format, can be colu or rowu

dataType

data type, usually "massPeaks"

Author(s)

Jeff Xia[email protected] Zhiqiang Pang[email protected] McGill University, Canada License: GNU GPL (>= 2)


ReadMetaPathTableMix

Description

ReadMetaPathTableMix

Usage

ReadMetaPathTableMix(mSetObj = NA, dataNM, dataNM2, dataFormat, dataType)

Arguments

mSetObj

mSetObj

dataNM

file name 1 with absolute path (should be ESI+)

dataNM2

file name 2 with absolute path (should be ESI-)

dataFormat

data format, can be colu or rowu

dataType

data type, usually "massPeaks"

Author(s)

Jeff Xia[email protected] Zhiqiang Pang[email protected] McGill University, Canada License: GNU GPL (>= 2)


Read paired peak or spectra files

Description

This function reads paired peak lists or spectra files. The pair information is stored in a file where each line is a pair and names are separated by ":".

Usage

ReadPairFile(filePath = "pairs.txt")

Arguments

filePath

Set file path

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Record R Commands

Description

Record R Commands

Usage

RecordRCommand(mSetObj = NA, cmd)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

cmd

Commands


Perform utilities for peak grouping

Description

Perform various utilities for peak grouping

Usage

rectUnique(m, order = seq(length = nrow(m)), xdiff = 0, ydiff = 0)

Arguments

m

Peaks

order

Performs seq(length = nrow(m))

xdiff

Default set to 0

ydiff

Default set to 0

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Register data in R

Description

When there are multiple datasets, record their name and save the inputted data as a .qs file to save memory. Note, the memory will only contain one mSetObj$dataSet object. By default the last one will be the most recent/current dataSet object. Users can switch which data to load into memory.

Usage

RegisterData(mSetObj = NA, dataSet)

Arguments

mSetObj

Input name of the created mSet Object

dataSet

Input dataset to be registered in R.

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Remove selected compounds

Description

Remove compounds

Usage

RemoveCmpd(mSetObj = NA, inx)

Arguments

mSetObj

Input name of the created mSet Object

inx

Input the index of compound to remove


Remove data object, the current dataSet will be the last one by default

Description

Remove data object, the current dataSet will be the last one by default

Usage

RemoveData(dataName)

Arguments

dataName

Input name of data to remove


Given a data with duplicates, remove duplicates

Description

Dups is the one with duplicates

Usage

RemoveDuplicates(data, lvlOpt = "mean", quiet = T)

Arguments

data

Input data to remove duplicates

lvlOpt

Set options, default is mean

quiet

Set to quiet, logical, default is T

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Remove file

Description

Remove file

Usage

RemoveFile(fileName)

Arguments

fileName

Input name of file to remove

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Remove folder

Description

Remove folder

Usage

RemoveFolder(folderName)

Arguments

folderName

Input name of folder to remove

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Remove selected genes

Description

Remove selected genes based on an index

Usage

RemoveGene(mSetObj = NA, inx)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

inx

Input compound index


Data processing: remove variables with missing values

Description

Remove variables based upon a user-defined percentage cut-off of missing values. If a user specifies a threshold of 20 in at least 20

Usage

RemoveMissingPercent(mSetObj, percent)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

percent

Input the percentage cut-off you wish to use. For instance, 50 percent is represented by percent=0.5.

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Replace missing or zero values

Description

This function will replace zero/missing values by half of the smallest positive value in the original dataset. This method will be called after all missing value imputations are conducted. Also, it directly modifies the mSet$dataSet$proc if executed after normalization, or the mSet$dataSet$norm if before normalization.

Usage

ReplaceMin(mSetObj=NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Redraw current graph for zooming or clipping then return a value

Description

Redraw current graph for zooming or clipping then return a value

Usage

RerenderMetPAGraph(mSetObj = NA, imgName, width, height, zoom.factor = NA)

Arguments

mSetObj

Input name of the created mSet Object

imgName

Input the name of the plot

width

Input the width, there are 2 default widths, the first, width = NULL, is 10.5. The second default is width = 0, where the width is 7.2. Otherwise users can input their own width.

height

Input the height of the created plot.

zoom.factor

zoom factor, numeric

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Perform Random Forest Analysis

Description

Perform Random Forest

Usage

RF.Anal(mSetObj = NA, treeNum = 500, tryNum = 7, randomOn = 1)

Arguments

mSetObj

Input name of the created mSet Object

treeNum

Input the number of trees to create, default is set to 500

tryNum

Set number of tries, default is 7

randomOn

Set random, default is 1

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Perform Random Forest Analysis

Description

Perform Random Forest

Usage

RF.AnalMeta(
  mSetObj = NA,
  treeNum = 500,
  tryNum = 7,
  randomOn = 1,
  selectedMeta
)

Arguments

mSetObj

Input name of the created mSet Object

treeNum

Input the number of trees to create, default is set to 500

tryNum

Set number of tries, default is 7

randomOn

Set random, default is 1

selectedMeta

selected Meta elements

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Create a table of newly classified samples

Description

Function to create the table of newly classified samples

Usage

ROCPredSamplesTable(mSetObj = NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects) Function to create the table of newly classified samples


R-SVM core code

Description

Core code to perform R-SVM

Usage

RSVM(x, y, ladder, CVtype, CVnum = 0)

Arguments

x

Row matrix of data

y

Class label: 1 / -1 for 2 classes

ladder

Input the ladder

CVtype

Integer (N fold CV), "LOO" leave-one-out CV, "bootstrape" bootstrape CV

CVnum

Number of CVs, LOO: defined as sample size, Nfold and bootstrape: user defined, default as sample size outputs a named list Error: a vector of CV error on each level SelFreq: a matrix for the frequency of each gene being selected in each level with each column corresponds to a level of selection and each row for a gene The top important gene in each level are those high-freqent ones

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Recursive Support Vector Machine (R-SVM)

Description

recursive SVM for feature selection and classification

Usage

RSVM.Anal(mSetObj = NA, cvType)

Arguments

mSetObj

Input name of the created mSet Object

cvType

Cross-validation type

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


SaintyCheckMSPfile

Description

SaintyCheckMSPfile

Usage

SaintyCheckMSPfile(
  mSetObj = NA,
  filename = "",
  format_type = "mzmine",
  keepAllspec = FALSE
)

Arguments

mSetObj

mSetObj

filename

filename with path

format_type

format type, can be 'mzmine' or 'msdial'

keepAllspec

if you want to search all spectra from your local, turn keepAllspec to TRUE. it is FALSE by default.

Author(s)

Zhiqiang Pang


Perform Signifiance Analysis of Microarrays (SAM) analysis

Description

Perform SAM

Usage

SAM.Anal(
  mSetObj = NA,
  method = "d.stat",
  paired = FALSE,
  varequal = TRUE,
  delta = 0,
  imgName,
  dpi = 72
)

Arguments

mSetObj

Input name of the created mSet Object

method

Method for SAM analysis, default is set to "d.stat", alternative is "wilc.stat"

paired

Logical, indicates if samples are paired or not. Default is set to FALSE

varequal

Logical, indicates if variance is equal. Default is set to TRUE

delta

numeric

imgName

image name, character

dpi

image dpi, integer

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Sanity Check Data

Description

SanityCheckData is used for data processing, and performs a basic sanity check of the uploaded content, ensuring that the data is suitable for further analysis. The function will return a message if the data has successfully passed the check and is deemed suitable for further analysis. If it fails, the function will return a 0. The function will perform the check directly onto the mSet$dataSet object, and must be performed immediately after reading in data. The sanity check function evaluates the accuracy of sample and class labels, data structure, deals with non-numeric values, removes columns that are constant across all samples (variance = 0), and by default replaces missing values with half of the original minimal positive value in your dataset.

Usage

SanityCheckData(mSetObj=NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Sanity check of individual datasets for meta-analysis

Description

Performs a sanity check on each-uploaded dataset for meta-analysis. Briefly, this function will exclude empty rows, check class labels, ensure only 2 groups are being compared within the dataset, ensure sample names are unique, remove low quality samples/features, and replace missing values.

Usage

SanityCheckIndData(mSetObj = NA, dataName)

Arguments

mSetObj

Input name of the created mSet Object

dataName

Input name of the dataset to perform the sanity check.

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


SanityCheckMeta#'

Description

SanityCheckMeta#'

Usage

SanityCheckMeta(mSetObj = NA, init = 1)

Arguments

mSetObj

metaboanalyst object

init

can be 0 or 1


SanityCheckMetaPathTable

Description

SanityCheckMetaPathTable

Usage

SanityCheckMetaPathTable(mSetObj = NA, dataName, dataName2)

Arguments

mSetObj

mSetObj

dataName

file name 1 with absolute path

dataName2

file name 2 with absolute path or "null"

Author(s)

Jeff Xia[email protected] Zhiqiang Pang[email protected] McGill University, Canada License: GNU GPL (>= 2)


Sanity Check Data

Description

SanityCheckData is used for data processing, and performs a basic sanity check of the uploaded data, ensuring that the data is suitable for further analysis. The function ensure that all parameters are properly set based on updated parameters.

Usage

SanityCheckMummichogData(mSetObj=NA)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects).

Author(s)

Jasmine Chong, Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Function to save each mSetObj as a RDS file to be used later in PerformMetaPSEA. Should be called after SetPeakEnrichMethod/SetMummichogPval

Description

Function to save each mSetObj as a RDS file to be used later in PerformMetaPSEA. Should be called after SetPeakEnrichMethod/SetMummichogPval

Usage

savePeakListMetaData(mSetObj = NA)

Arguments

mSetObj

mSetObj


Save the processed data with class names

Description

This function saves the processed data with class names as CSV files. Several files may be generated, the original data, processed data, peak normalized, and/or normalized data.

Usage

SaveTransformedData(mSetObj = NA)

Arguments

mSetObj

Input name of the created mSet Object

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Search for compound from all member compounds of metabolite set

Description

Search for compound from all member compounds of metabolite set

Usage

SearchByCompound(mSetObj = NA, query)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

query

Input the query to search

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Given a metabolite set name, search its index

Description

Given a metabolite set name, search its index

Usage

SearchByName(mSetObj = NA, query)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

query

Input the query to search

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Search metabolite set libraries

Description

Search metabolite set libraries

Usage

SearchMsetLibraries(mSetObj = NA, query, type)

Arguments

mSetObj

Input name of the created mSet Object

query

Input the query to search

type

Input the data type (name or compound)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Perform mapping of user's data to interaction network

Description

This function performs mapping of user's data to the internal network to create a network from the seed nodes

Usage

SearchNetDB(
  mSetObj = NA,
  db.type,
  table.nm,
  require.exp = TRUE,
  min.score = 900
)

Arguments

mSetObj

Input name of the created mSet Object

db.type

Input the database type

table.nm

Input the organism code for the sqlite table (ppi). For chemical type, the table.nm is drugbank of ctd

require.exp

Logical, only used for the STRING database

min.score

Input the minimal score, only used for the STRING database

Author(s)

Othman Soufan, Jeff Xia [email protected], [email protected] McGill University, Canada License: GNU GPL (>= 2)


Select one or more datasets for meta-analysis

Description

This function selects one or more datasets to be used for meta-analysis. 1 is used to indicate that a dataset is selected and by default, all datasets will be selected for meta-analysis.

Usage

SelectMultiData(mSetObj = NA)

Arguments

mSetObj

Input name of the created mSet Object

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Set biomarker analysis mode

Description

ROC utilities

Usage

SetAnalysisMode(mSetObj, mode)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)s

mode

Input the selected mode for biomarker analysis, "univ" for univariate ROC curve analysis, "explore" for multivariate ROC curve analysis, and "test" for ROC curve based model creation and evaluation. McGill University, Canada License: GNU GPL (>= 2)

Author(s)

Jeff Xia [email protected]


Set the cachexia set used

Description

Set cachexia set used

Usage

SetCachexiaSetUsed(mSetObj = NA, used)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

used

Set data to be used


Set matched name based on user selection from all potential hits

Description

Note: to change object in the enclosing enviroment, use "<<-"

Usage

SetCandidate(mSetObj = NA, query_nm, can_nm)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects).

query_nm

Input the query name.

can_nm

Input the candidate name.

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


To choose from two groups

Description

Choose two groups (when more than two groups uploaded)

Usage

SetCurrentGroups(mSetObj = NA, grps)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

grps

Input the groups

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Set current user selected metset library for search

Description

if enrichment analysis, also prepare lib by creating a list of metabolite sets

Usage

SetCurrentMsetLib(mSetObj=NA, libname, excludeNum)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

libname

Input user selected name of library, "self", "kegg_pathway", "smpdb_pathway", "blood", "urine", "csf", "snp", "predicted", "location", and "drug".

excludeNum

Users input the mimimum number compounds within selected metabolite sets (metabolitesets < excludeNum)

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Set custom data

Description

The "selected.cmpds" should be for extraction

Usage

SetCustomData(mSetObj = NA, selected.cmpds, selected.smpls)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

selected.cmpds

Input the vector containing the compounds

selected.smpls

Input the vector containing the samples


SetDataTypeOfMeta

Description

SetDataTypeOfMeta

Usage

SetDataTypeOfMeta(mSetObj = NA)

Arguments

mSetObj

metaboanalyst object


For two factor time series only

Description

For two factor time series only

Usage

SetDesignType(mSetObj = NA, design)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

design

Input the design type

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


setInclusionDataSets#'

Description

setInclusionDataSets#'

Usage

setInclusionDataSets(mSetObj = NA, datasVec)

Arguments

mSetObj

mSetObj

datasVec

a vector of all files

Author(s)

Jeff Xia[email protected] Zhiqiang Pang[email protected] McGill University, Canada License: GNU GPL (>= 2)

Examples

#setInclusionDataSets(c("A1_pos.csv","B1_pos.csv","C1_pos.csv"));

Set KEGG pathway library

Description

note, this process can be long, need to return a value to force Java to wait

Usage

SetKEGG.PathLib(mSetObj = NA, libNm, lib.version)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

libNm

lib name option KEGG pathway library or "v2018" for the KEGG pathway library version prior to November 2019.

lib.version

Input the KEGG pathway version. "current" for the latest

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Set metabolome filter

Description

Set metabolome filter

Usage

SetMetabolomeFilter(mSetObj = NA, TorF)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

TorF

Input metabolome filter


setMS2DBOpt

Description

setMS2DBOpt

Usage

setMS2DBOpt(mSetObj = NA, DBoption = "regular")

Arguments

mSetObj

mSetObj object

DBoption

database option to define neutral loss or not, can be either 'regualr" or 'nl'.

Author(s)

Zhiqiang Pang


Set the cutoff for mummichog analysis

Description

Set the p-value cutoff for mummichog analysis.

Usage

SetMummichogPval(mSetObj = NA, cutoff)

Arguments

mSetObj

Input the name of the created mSetObj.

cutoff

cutoff value for mummichog running

Author(s)

Jasmine Chong, Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Set the cutoff for mummichog analysis

Description

Set the p-value cutoff for mummichog analysis.

Usage

SetMummichogPvalFromPercent(mSetObj = NA, fraction)

Arguments

mSetObj

Input the name of the created mSetObj.

fraction

fraction value for mummichog running

Author(s)

Jasmine Chong, Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Set organism for further analysis

Description

Set organism for further analysis

Set organism for further analysis

Usage

SetOrganism(mSetObj = NA, org)

SetOrganism(mSetObj = NA, org)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

org

Set organism ID


Set the peak enrichment method for the MS Peaks to Paths module

Description

This function sets the peak enrichment method.

Usage

SetPeakEnrichMethod(mSetObj = NA, algOpt, version = "v2")

Arguments

mSetObj

Input the name of the created mSetObj.

algOpt

algorithm option, can be "gsea", "mum" and "integ"

version

version of mummichog

Author(s)

Jasmine Chong, Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Set the peak format for the mummichog analysis

Description

Set the peak format for mummichog analysis.

Usage

SetPeakFormat(mSetObj = NA, type = "mpt")

Arguments

mSetObj

mSetObj

type

Input the name of mummichog analysis type, usually 'mpt'.

Author(s)

Jasmine Chong, Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Set peak list group values

Description

Set peak list group values

Usage

SetPeakList.GroupValues(mSetObj = NA)

Arguments

mSetObj

Input name of mSetObj, the data used is the nmr.xcmsSet object


SetPeakParam

Description

SetPeakParam, used to set the peak param

Usage

SetPeakParam(
  platform = "general",
  Peak_method = "centWave",
  RT_method = "loess",
  mzdiff,
  snthresh,
  bw,
  ppm,
  min_peakwidth,
  max_peakwidth,
  noise,
  prefilter,
  value_of_prefilter,
  fwhm,
  steps,
  sigma,
  peakBinSize,
  max,
  criticalValue,
  consecMissedLimit,
  unions,
  checkBack,
  withWave,
  profStep,
  minFraction,
  minSamples,
  maxFeatures,
  mzCenterFun,
  integrate,
  extra,
  span,
  smooth,
  family,
  fitgauss,
  polarity,
  perc_fwhm,
  mz_abs_iso,
  max_charge,
  max_iso,
  corr_eic_th,
  mz_abs_add,
  adducts,
  rmConts,
  BlankSub
)

Arguments

platform

platform

Peak_method

Peak_method

RT_method

RT_method

mzdiff

mzdiff

snthresh

snthresh

bw

bw

ppm

ppm

min_peakwidth

min_peakwidth

max_peakwidth

max_peakwidth

noise

noise

prefilter

prefilter

value_of_prefilter

value_of_prefilter

fwhm

fwhm

steps

steps

sigma

sigma

peakBinSize

peakBinSize

max

max

criticalValue

criticalValue

consecMissedLimit

consecMissedLimit

unions

unions

checkBack

checkBack

withWave

withWave

profStep

profStep

minFraction

minFraction

minSamples

minSamples

maxFeatures

maxFeatures

mzCenterFun

mzCenterFun

integrate

integrate

extra

extra

span

span

smooth

smooth

family

family

fitgauss

fitgauss

polarity

polarity

perc_fwhm

perc_fwhm

mz_abs_iso

mz_abs_iso

max_charge

max_charge

max_iso

max_iso

corr_eic_th

corr_eic_th

mz_abs_add

mz_abs_add

adducts

adducts

rmConts

rmConts

Author(s)

Zhiqiang Pang


SetRTincluded

Description

SetRTincluded

Usage

SetRTincluded(mSetObj = NA, rt = "no")

Arguments

mSetObj

mSetObj

rt

retention time types, "minutes", "seconds" or "no"

Value

mSetObj


Set SMPDB pathway library

Description

note, this process can be long, need to return a value to force Java to wait

Usage

SetSMPDB.PathLib(mSetObj = NA, libNm)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

libNm

Input library name

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Save adduct names for mapping

Description

Save adduct names for mapping

Usage

Setup.AdductData(mSetObj = NA, qvec)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

qvec

Input the vector to query

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Save biofluid type for SSP

Description

Save biofluid type for SSP

Usage

Setup.BiofluidType(mSetObj = NA, type)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

type

Input the biofluid type

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Save concentration data

Description

Save concentration data

Usage

Setup.ConcData(mSetObj = NA, conc)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

conc

Input the concentration data

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Read user uploaded metabolome as a list of HMDB compound names

Description

Read user uploaded metabolome as a list of HMDB compound names

Usage

Setup.HMDBReferenceMetabolome(mSetObj = NA, filePath)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

filePath

Input the path to the user's list of HMDB compound names

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Read user uploaded metabolome as a list of KEGG pathway ids

Description

Read user uploaded metabolome as a list of KEGG pathway ids

Usage

Setup.KEGGReferenceMetabolome(mSetObj = NA, filePath)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

filePath

Input the path to the user's list of KEGG pathway ids

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Save compound name for mapping

Description

Save compound name for mapping

Usage

Setup.MapData(mSetObj = NA, qvec)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

qvec

Input the vector to query

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Read user upload metabolite set library file

Description

Return two col csv file, first name, second cmpd list

Usage

Setup.UserMsetLibData(mSetObj = NA, filePath)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

filePath

Input the path to the user's uploaded metabolite set library

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


SOM analysis

Description

SOM analysis

Usage

SOM.Anal(mSetObj = NA, x.dim, y.dim, initMethod, neigb = "gaussian")

Arguments

mSetObj

Input name of the created mSet Object

x.dim

Input X dimension for SOM analysis

y.dim

Input Y dimension for SOM analysis

initMethod

Input the method

neigb

Default is set to 'gaussian'

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Perform Sparse Generalized Canonical Correlation (sgccak)

Description

Runs sgccak() modified from RGCCA

Usage

sparse.mint.block_iteration(
  A,
  design,
  study = NULL,
  keepA.constraint = NULL,
  keepA = NULL,
  scheme = "horst",
  init = "svd",
  max.iter = 100,
  tol = 1e-06,
  verbose = TRUE,
  bias = FALSE,
  penalty = NULL
)

Arguments

A

Data

design

Set design

study

Default set to NULL

keepA.constraint

Default set to NULL

keepA

Default set to NULL

scheme

Scheme, default set to "horst"

init

Init mode, default set to "svd"

max.iter

Max number of iterations, numeric, default set to 100

tol

Tolerance, numeric, default set to 1e-06

verbose

Default set to TRUE

bias

Default set to FALSE

penalty

Default set to NULL

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Perform sPLS-DA

Description

Sparse PLS functions (adapted from mixOmics package for web-based usage) this function is a particular setting of internal_mint.block the formatting of the input is checked in internal_wrapper.mint

Usage

splsda(
  X,
  Y,
  ncomp = 2,
  mode = c("regression", "canonical", "invariant", "classic"),
  keepX,
  keepX.constraint = NULL,
  scale = TRUE,
  tol = 1e-06,
  max.iter = 100,
  near.zero.var = FALSE,
  logratio = "none",
  multilevel = NULL
)

Arguments

X

numeric matrix of predictors

Y

a factor or a class vector for the discrete outcome

ncomp

the number of components to include in the model. Default to 2.

mode

Default set to c("regression", "canonical", "invariant", "classic")

keepX

Number of XX variables kept in the model on the last components (once all keepX.constraint[[i]] are used).

keepX.constraint

A list containing which variables of X are to be kept on each of the first PLS-components.

scale

Boleean. If scale = TRUE, each block is standardized to zero means and unit variances (default: TRUE).

tol

Convergence stopping value.

max.iter

integer, the maximum number of iterations.

near.zero.var

boolean, see the internal nearZeroVar function (should be set to TRUE in particular for data with many zero values). Setting this argument to FALSE (when appropriate) will speed up the computations

logratio

"None" by default, or "CLR"

multilevel

Designate multilevel design, "NULL" by default

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Perform SPLS-DA

Description

Sparse PLS-DA (from mixOmics)

Usage

SPLSR.Anal(
  mSetObj = NA,
  comp.num,
  var.num,
  compVarOpt,
  validOpt = "Mfold",
  foldNum = 5,
  doCV = FALSE
)

Arguments

mSetObj

Input name of the created mSet Object

comp.num

Input the number of computations to run

var.num

Input the number of variables

compVarOpt

Input the option to perform SPLS-DA

validOpt

INput the valid option

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Row-wise Normalization

Description

Row-wise norm methods, when x is a row. Normalize by a sum of each sample, assume constant sum (1000). Options for normalize by sum median, reference sample, reference reference (compound), or quantile normalization

Usage

SumNorm(x)

Arguments

x

Input data to normalize

Author(s)

Jeff Xia [email protected] McGill University, Canada


Pattern hunter

Description

Run template on all the high region effect genes

Usage

template.match(x, template, dist.name)

Arguments

x

Input data

template

Input template

dist.name

Input distance method

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Perform t-test analysis

Description

This function is used to perform t-test analysis.

Usage

Ttests.Anal(
  mSetObj = NA,
  nonpar = F,
  threshp = 0.05,
  paired = FALSE,
  equal.var = TRUE,
  pvalType = "fdr",
  all_results = FALSE
)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

nonpar

Logical, use a non-parametric test, T or F. False is default.

threshp

Numeric, enter the adjusted p-value (FDR) cutoff

paired

Logical, is data paired (T) or not (F).

equal.var

Logical, evaluates if the group variance is equal (T) or not (F).

pvalType

pvalType, can be "fdr" etc.

all_results

Logical, if TRUE, returns T-Test analysis results for all compounds.

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Unzip .zip files

Description

Unzips uploaded .zip files, removes the uploaded file, checks for success

Usage

UnzipUploadedFile(inPath, outPath, rmFile = T)

Arguments

inPath

Input the path of the zipped files

outPath

Input the path to directory where the unzipped files will be deposited

rmFile

Logical, input whether or not to remove files. Default set to T

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Update data for filtering

Description

Function to update the mSetObj after removing features or samples.

Usage

UpdateData(mSetObj = NA, order.group = FALSE)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)


Update the mSetObj with user-selected parameters for MS Peaks to Pathways.

Description

This functions handles updating the mSet object for mummichog analysis.

Usage

UpdateEC_Rules(mSetObj = NA, force_primary_ion, rt_tol)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects).

force_primary_ion

Character, if "yes", only mz features that match compounds with a primary ion are kept.

rt_tol

Numeric. Input the retention time tolerance used for determining ECs (in seconds).

Author(s)

Jasmine Chong, Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Update graph settings

Description

Function to update the graph settings.

Usage

UpdateGraphSettings(mSetObj = NA, colVec, shapeVec)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

colVec

colVec

shapeVec

shapeVec


Update the mSetObj with user-selected parameters for MS Peaks to Pathways.

Description

This functions handles updating the mSet object for mummichog analysis. It is necessary to utilize this function to specify to the organism's pathways to use (libOpt), the mass-spec mode (msModeOpt) and mass-spec instrument (instrumentOpt).

Usage

UpdateInstrumentParameters(mSetObj=NA, instrumentOpt, 
msModeOpt, force_primary_ion, rt_frac, rt_tol)

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects).

instrumentOpt

Numeric. Define the mass-spec instrument used to perform untargeted metabolomics.

msModeOpt

Character. Define the mass-spec mode of the instrument used to perform untargeted metabolomics.

force_primary_ion

Character, if "yes", only mz features that match compounds with a primary ion are kept.

rt_frac

rt_frac.

rt_tol

rt_tol.

Author(s)

Jasmine Chong, Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Update integrative pathway analysis for new input list

Description

used for integrative analysis as well as general pathways analysis for meta-analysis results

Usage

UpdateIntegPathwayAnalysis(mSetObj=NA, qids, file.nm, 
topo="dc", enrich="hyper", libOpt="integ")

Arguments

mSetObj

Input name of the created mSet Object

qids

Input the query IDs

file.nm

Input the name of the file

topo

Select the mode for topology analysis: Degree Centrality ("dc") measures the number of links that connect to a node (representing either a gene or metabolite) within a pathway; Closeness Centrality ("cc") measures the overall distance from a given node to all other nodes in a pathway; Betweenness Centrality ("bc")measures the number of shortest paths from all nodes to all the others that pass through a given node within a pathway.

enrich

Method to perform over-representation analysis (ORA) based on either hypergenometrics analysis ("hyper") or Fisher's exact method ("fisher").

libOpt

Select the different modes of pathways, either the gene-metabolite mode ("integ") which allows for joint-analysis and visualization of both significant genes and metabolites or the gene-centric ("genetic") and metabolite-centric mode ("metab") which allows users to identify enriched pathways driven by significant genes or metabolites, respectively.

Author(s)

Jeff Xia [email protected] McGill University, Canada License: GNU GPL (>= 2)


Update OPLS loadings

Description

Update the OPLS loadings

Usage

UpdateOPLS.Splot(mSetObj = NA, plotType)

Arguments

mSetObj

Input name of the created mSet Object

plotType

Set annotation type, "all" to label all variables and "none" to label no variables.

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Update PCA loadings

Description

Update the PCA loadings

Usage

UpdatePCA.Loading(mSetObj = NA, plotType)

Arguments

mSetObj

Input name of the created mSet Object

plotType

Set annotation type, "all" to label all variables and "none" to label no variables.

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Update PLS loadings

Description

Update the PLS loadings

Usage

UpdatePLS.Loading(mSetObj = NA, plotType)

Arguments

mSetObj

Input name of the created mSet Object

plotType

Set annotation type, "all" to label all variables and "none" to label no variables.

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Perform utilities for MetPa

Description

Convert user coords (as used in current plot) to pixels in a png adapted from the imagemap package

Usage

usr2png(xy, im)

Arguments

xy

Input coordinates

im

Input coordinates

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Perform Volcano Analysis

Description

Perform volcano analysis

Usage

Volcano.Anal(mSetObj=NA, paired=FALSE, fcthresh, 
cmpType, nonpar=F, threshp, equal.var=TRUE, pval.type="raw")

Arguments

mSetObj

Input the name of the created mSetObj (see InitDataObjects)

paired

Logical, T if data is paired, F if data is not.

fcthresh

Numeric, input the fold change threshold

cmpType

Comparison type, 0 indicates group 1 vs group 2, and 1 indicates group 2 vs group 1

nonpar

Logical, indicate if a non-parametric test should be used (T or F)

threshp

Numeric, indicate the p-value threshold

equal.var

Logical, indicates if the group variance is equal (T) or unequal (F)

pval.type

To indicate raw p-values, use "raw". To indicate FDR-adjusted p-values, use "fdr".

Author(s)

Jeff Xia[email protected] McGill University, Canada License: GNU GPL (>= 2)


Converts xset object from XCMS to mSet object for MetaboAnalyst

Description

This function converts processed raw LC/MS data from XCMS to a usable data object (mSet) for MetaboAnalyst. The immediate next step following using this function is to perform a SanityCheck, and then further data processing and analysis can continue.

Usage

XSet2MSet(xset, dataType, analType, paired = F, format, lbl.type)

Arguments

xset

The name of the xcmsSet object created.

dataType

The type of data, either list (Compound lists), conc (Compound concentration data), specbin (Binned spectra data), pktable (Peak intensity table), nmrpeak (NMR peak lists), mspeak (MS peak lists), or msspec (MS spectra data).

analType

Indicate the analysis module to be performed: stat, pathora, pathqea, msetora, msetssp, msetqea, mf, cmpdmap, smpmap, or pathinteg.

paired

Logical, is data paired (T) or not (F).

format

Specify if samples are paired and in rows (rowp), unpaired and in rows (rowu), in columns and paired (colp), or in columns and unpaired (colu).

lbl.type

Specify the data label type, either categorical (disc) or continuous (cont).