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aperm2 Generalized permutation of the dimensions of an array

Description

aperm2() extends the functionality of base::aperm() by allowing dropping and/or adding inef-
fective dimensions (i.e. dimensions with an extent of 1) from/to the input array, in addition to
permuting its dimensions.

Note that, like base::aperm(), aperm2() always preserves the length of the input array. However,
unlike with base::aperm(), the array returned by aperm2() doesn’t necessarily have the same
number of dimensions as the input array.

Usage

aperm2(a, perm)

Arguments

a An ordinary array.

perm An integer vector, possibly containing NAs, indicating how the dimensions of the
returned array should be mapped to those of the input array.
More precisely, perm can be one of the following:

• A permutation of the seq_along(dim(a)) vector, like for base::aperm().
Note that if the identity permutation is used (i.e. perm=seq_along(dim(a))),
then aperm2() is a no-op (like with base::aperm()).

• A permutation of a subset of the seq_along(dim(a)) vector. In this case
the dimensions that are excluded must be ineffective dimensions i.e. each
of them must have an extent of 1. In other words, only integers that belong
to which(dim(a) == 1) can be missing from perm.
In this case, the ineffective dimensions that are excluded will be dropped
i.e. they won’t be carried over to the returned array.
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• Additionally, any number of NAs can be inserted anywhere in a perm vector
like one described above.
In this case, ineffective dimensions will be added to the returned array.
These added dimensions will materialize as additional 1’s in the dim() vec-
tor of the returned array, at positions that match the positions of the NAs in
perm.

Note that if perm is missing, then aperm2(a) reverses the order of a’s dimen-
sions (i.e. perm gets set to rev(seq_along(dim(a)))), like base::aperm(a)
does.

Value

An array with one dimension per element in the perm argument. The length of the returned array
will always be the same as the length of the input array. (Note that for an array a, length(a) is
prod(dim(a)).)

Note

The aperm() method for DelayedArray objects defined in the DelayedArray package implements
the "aperm2 semantic", that is, it allows dropping and/or adding ineffective dimensions from/to the
input DelayedArray object.

See Also

• aperm in the base package for the function that aperm2 is based on.

• aperm in the BiocGenerics package for the aperm S4 generic function.

• aperm,SVT_SparseArray-method in the SparseArray package and aperm,DelayedArray-method
in the DelayedArray package for aperm() methods that implements the "aperm2 semantic".

Examples

## ---------------------------------------------------------------------
## SOME EXAMPLES WITH A 4D ARRAY
## ---------------------------------------------------------------------

a <- array(1:72, c(3, 6, 1, 4),
dimnames=list(NULL, letters[1:6], NULL, LETTERS[1:4]))

a

## Permute first two dimensions:
aperm2(a, perm=c(2,1,3,4))

## Permute first and last dimensions:
aperm2(a, perm=c(4,2,3,1))

## Drop 3rd dimension:
aperm2(a, perm=c(1,2,4))

## Drop 3rd dimension and permute 2nd and last:
aperm2(a, perm=c(1,4,2))
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## Drop 3rd dimension and cycle the order of the remaining ones:
aperm2(a, perm=c(2,4,1))

## Add one ineffective dimension:
aperm2(a, perm=c(NA,1,2,3,4))
aperm2(a, perm=c(1,NA,2,3,4))
aperm2(a, perm=c(1,2,NA,3,4))
aperm2(a, perm=c(1,2,3,NA,4))
aperm2(a, perm=c(1,2,3,4,NA))

## Add four ineffective dimensions:
aperm2(a, perm=c(NA,1,2,3,NA,NA,4,NA))

## Permute first and last dimensions and add one ineffective dimension:
aperm2(a, perm=c(4,2,3,NA,1))

## Drop 3rd dimension, cycle the order of the remaining ones, and add
## two ineffective dimensions:
aperm2(a, perm=c(2,4,NA,1,NA))

## No-op:
aperm2(a, perm=seq_along(dim(a)))

## Reverse the order of the dimensions (multidimensional transposition):
aperm2(a) # same as 'aperm2(a, perm=rev(seq_along(dim(a))))'

## ---------------------------------------------------------------------
## COMPOSING aperm2() TRANSFORMATIONS
## ---------------------------------------------------------------------

## Applying two successive aperm() transformations, first with 'perm'
## set to 'perm1' then set to 'perm2', is equivalent to applying a
## single aperm() transformation with 'perm' set to 'perm1[perm2]'.
##
## More formally:
## aperm(aperm(a, perm=perm1), perm=perm2)
## is equivalent to:
## aperm(a, perm=perm1[perm2])
##
## Note that this also applies to aperm2()!

## Examples with aperm():

perm1 <- c(2,4,3,1)
perm2 <- c(4,3,2,1)
perm3 <- c(2,1,4,3)

a12 <- aperm(aperm(a, perm=perm1), perm=perm2)
stopifnot(identical(a12, aperm(a, perm=perm1[perm2])))

a13 <- aperm(aperm(a, perm=perm1), perm=perm3)
stopifnot(identical(a13, aperm(a, perm=perm1[perm3])))
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a23 <- aperm(aperm(a, perm=perm2), perm=perm3)
stopifnot(identical(a23, aperm(a, perm=perm2[perm3])))

a123 <- aperm(aperm(aperm(a, perm=perm1), perm=perm2), perm=perm3)
stopifnot(identical(a123, aperm(a, perm=perm1[perm2][perm3])))
stopifnot(identical(a123, aperm(a, perm=perm1[perm2[perm3]])))

## Examples with aperm2():

perm1 <- c(2,4,1)
perm2 <- c(1,3,NA,2,NA)
perm3 <- c(5,4,2,1)

a12 <- aperm2(aperm2(a, perm=perm1), perm=perm2)
stopifnot(identical(a12, aperm2(a, perm=perm1[perm2])))

a123 <- aperm2(aperm2(aperm2(a, perm=perm1), perm=perm2), perm=perm3)
stopifnot(identical(a123, aperm2(a, perm=perm1[perm2][perm3])))
stopifnot(identical(a123, aperm2(a, perm=perm1[perm2[perm3]])))

## ---------------------------------------------------------------------
## REVERSIBILITY OF THE aperm2() TRANSFORMATION
## ---------------------------------------------------------------------

## An aperm() or aperm2() transformation is always reversible.
## The 'perm' vector to use to achieve the reverse transformation
## can be inferred from the initial 'perm' vector using the following
## helper function ('n' must be the number of dimensions of
## the original array):
build_rev_perm <- function(perm, n=length(perm)) {

rev_perm <- rep.int(NA_integer_, n)
na_idx <- which(!is.na(perm))
rev_perm[perm[na_idx]] <- na_idx
rev_perm

}

## Examples:

perm <- c(2,4,NA,1,NA)
rev_perm <- build_rev_perm(perm, n=length(dim(a)))
stopifnot(identical(aperm2(aperm2(a, perm=perm), perm=rev_perm), a))

## The "composed" 'perm' vector achieves identity:
perm[rev_perm]

## Sanity checks:

perm <- seq_len(10)
stopifnot(identical(build_rev_perm(perm), perm))

perm <- c(2:5,1L)
rev_perm <- build_rev_perm(perm)
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stopifnot(identical(perm[rev_perm], seq_along(perm)))

perm <- c(5L,NA,2:4,NA,NA,1L)
rev_perm <- build_rev_perm(perm, n=6)
stopifnot(identical(perm[rev_perm], c(1:5,NA)))

array selection Manipulation of array selections

Description

NOTE: The tools documented in this man page are primarily intended for developers or advanced
users curious about the internals of the SparseArray or DelayedArray packages. End users typi-
cally don’t need them for their regular use of SparseArray or DelayedArray objects.

An array selection is just an index into an array-like object that contains the information of which
array elements are selected. This index can take various forms but 3 special forms are particularly
useful and extensively used in the context of the SparseArray and DelayedArray packages: linear
index (also referred to as L-index or Lindex), matrix index (also referred to as M-index or Mindex),
N-dimensional index (also referred to as N-index or Nindex). See Details section below for more
information.

Two utility functions are provided at the moment to convert back and forth between L-indices and
M-indices. More will be added in the future to convert between other types of array indices.

Usage

## Convert back and forth between L-indices and M-indices:
Lindex2Mindex(Lindex, dim, use.names=FALSE)
Mindex2Lindex(Mindex, dim, use.names=FALSE, as.integer=FALSE)

Arguments

Lindex An L-index. See Details section below.
Mindex An M-index. See Details section below.

For convenience, Mindex can also be specified as an integer vector with one
element per dimension in the underlying array, in which case it will be treated
like a 1-row matrix.

dim An integer vector containing the dimensions of the underlying array.
Note that dim can also be an integer matrix, in which case it must have one row
per element in Lindex (or per row in Mindex) and one column per dimension in
the underlying array.

use.names Should the names (or rownames) on the input be propagated to the output?
as.integer Set to TRUE to force Mindex2Lindex to return the L-index as an integer vector.

Dangerous!
By default, i.e. when as.integer=FALSE, Mindex2Lindex will return the L-
index either as an integer or numeric vector. It will choose the former only if it’s
safe, that is, only if all the values in the L-index "fit" in the integer type. More
precisely:
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• If dim is not a matrix (i.e. is a vector) or if it’s a matrix with a single row:
Mindex2Lindex returns an integer or numeric vector depending on whether
prod(dim) is <= .Machine$integer.max (2^31 - 1) or not.

• Otherwise Mindex2Lindex returns a numeric vector.
Note that with these rules, Mindex2Lindex can return a numeric vector even if
an integer vector could have been used.
Use as.integer=TRUE only in situations where you know that all the L-index
values are going to "fit" in the integer type. Mindex2Lindex will return garbage
if they don’t.

Details

The 3 special forms of array indices that are extensively used in the context of the SparseArray
and DelayedArray packages:

1. Linear index (or L-index or Lindex): A numeric vector where each value is >= 1 and <= the
length of the array-like object. When using an L-index to subset an array-like object, the
returned value is a vector-like object (i.e. no dimensions) of the same length as the L-index.
Example:

a <- array(101:124, 4:2)
Lindex <- c(7, 2, 24, 2)
a[Lindex]

2. Matrix index (or M-index or Mindex): An integer matrix with one column per dimension in the
array-like object and one row per array element in the selection. The values in each column
must be >= 1 and <= the extent of the array-like object along the corresponding dimension.
When using an M-index to subset an array-like object, the returned value is a vector-like object
(i.e. no dimensions) of length the number of rows in the M-index.
Example:

a <- array(101:124, 4:2)
Mindex <- rbind(c(3, 2, 1),

c(2, 1, 1),
c(4, 3, 2),
c(2, 1, 1))

a[Mindex]

Note that this is the type of index returned by base::arrayInd.
3. N-dimensional (or N-index or Nindex): A list with one list element per dimension in the array-

like object. Each list element must be a subscript describing the selection along the corre-
sponding dimension of the array-like object. IMPORTANT: A NULL subscript is interpreted as
a missing subscript ("missing" like in a[ , , 1:2]), that is, as a subscript that runs along the
full extend of the corresponding dimension of the array-like object. This means that before
an N-index can be used in a call to [, [<-, [[ or [[<-, the NULL list elements in it must be
replaced with objects of class "name". When using an N-index to subset an array-like object,
the returned value is another array-like object of dimensions the lengths of the selections along
each dimensions.
Examples:
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a <- array(101:124, 4:2)

## Normalized N-index (i.e. non-NULL subscripts are integer
## vectors with positive values only):

Nindex <- list(c(1, 4, 1), NULL, 1)
## Same as a[c(1, 4, 1), , 1, drop=FALSE]:
S4Arrays:::subset_by_Nindex(a, Nindex)

Nindex <- list(integer(0), NULL, 1)
## Same as a[integer(0), , 1, drop=FALSE]:
S4Arrays:::subset_by_Nindex(a, Nindex)

## Non-normalized N-index:

Nindex <- list(-3, NULL, c(TRUE, FALSE, FALSE))
Nindex <- S4Arrays:::normalize_Nindex(Nindex, a)
## Same as a[-3, , 1, drop=FALSE]:
S4Arrays:::subset_by_Nindex(a, Nindex)

Nindex <- list(IRanges(2, 4), NULL, 1)
Nindex <- S4Arrays:::normalize_Nindex(Nindex, a)
## Same as a[2:4, , 1, drop=FALSE]:
S4Arrays:::subset_by_Nindex(a, Nindex)

dimnames(a)[[1]] <- LETTERS[1:4]
Nindex <- list(c("D", "B"), NULL, 1)
Nindex <- S4Arrays:::normalize_Nindex(Nindex, a)
## Same as a[c("D", "B"), , 1, drop=FALSE]:
S4Arrays:::subset_by_Nindex(a, Nindex)

Value

Lindex2Mindex returns an M-index.

Mindex2Lindex returns an L-index.

See Also

arrayInd in the base package.

Examples

## ---------------------------------------------------------------------
## M-index vs L-index
## ---------------------------------------------------------------------

a <- array(101:124, 4:2)
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## The same "array selection" can be represented by an M-index or
## an L-index. Here we use both representations to select the same
## 4 array elements:
Mindex <- rbind(c(3, 2, 1),

c(2, 1, 1),
c(4, 3, 2),
c(2, 1, 1))

a[Mindex]

Lindex <- c(7, 2, 24, 2)
a[Lindex]

## Sanity check:
stopifnot(identical(a[Mindex], a[Lindex]))

## ---------------------------------------------------------------------
## Convert back and forth between M-index and L-index representation
## ---------------------------------------------------------------------

Mindex2Lindex(Mindex, dim(a)) # L-index

Lindex2Mindex(Lindex, dim(a)) # M-index

## Sanity checks:
storage.mode(Mindex) <- storage.mode(Lindex) <- "integer"
stopifnot(identical(Mindex2Lindex(Mindex, dim(a)), Lindex))
stopifnot(identical(Lindex2Mindex(Lindex, dim(a)), Mindex))

## ---------------------------------------------------------------------
## More Mindex2Lindex() examples
## ---------------------------------------------------------------------

dim <- 4:2
Mindex2Lindex(c(4, 3, 1), dim)
Mindex2Lindex(c(4, 3, 2), dim)

Mindex <- rbind(c(1, 1, 1),
c(2, 1, 1),
c(3, 1, 1),
c(4, 1, 1),
c(1, 2, 1),
c(1, 1, 2),
c(4, 3, 2))

Mindex2Lindex(Mindex, dim)

## With a matrix of dimensions:

dims <- rbind(c(4L, 3L),
c(5L, 3L),
c(6L, 3L))

Mindex <- rbind(c(1, 2),
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c(1, 2),
c(1, 2))

Mindex2Lindex(Mindex, dims)

## Sanity checks:

dim <- c(33:30, 45L, 30L)
stopifnot(Mindex2Lindex(rep(1, 6), dim) == 1)
stopifnot(Mindex2Lindex(dim, dim) == prod(dim))

stopifnot(identical(Mindex2Lindex(arrayInd(1:120, 6:4), 6:4), 1:120))
stopifnot(identical(Mindex2Lindex(arrayInd(840:1, 4:7), 4:7), 840:1))

Array-class Array objects

Description

Array is a virtual class with no slots intended to be extended by concrete subclasses with an array-
like semantic.

Details

Some examples of Array derivatives:

• SparseArray objects implemented in the SparseArray package.

• DelayedArray objects implemented in the DelayedArray package.

• ArrayGrid and ArrayViewport objects implemented in this package (the S4Arrays package).

See Also

• array and matrix objects in base R.

Examples

showClass("Array") # virtual class with no slots



ArrayGrid-class 11

ArrayGrid-class ArrayGrid and ArrayViewport objects

Description

A grid is a partitioning of an array-like object into block-shaped regions called viewports.

The S4Arrays package defines two S4 classes to formally represent grids and viewports: the Ar-
rayGrid and ArrayViewport classes. Note that ArrayGrid and ArrayViewport objects are used ex-
tensively in the context of block processing of array-like objects.

There are two variants of ArrayGrid objects:

• RegularArrayGrid objects: for grids where all the blocks have the same geometry (except
maybe for the edge blocks).

• ArbitraryArrayGrid objects: for grids where blocks don’t necessarily have the same geometry.

Usage

## Constructor functions:
RegularArrayGrid(refdim, spacings=refdim)
ArbitraryArrayGrid(tickmarks)

downsample(x, ratio=1L)

Arguments

refdim An integer vector containing the dimensions of the reference array.

spacings An integer vector specifying the grid spacing along each dimension.

tickmarks A list of integer vectors, one along each dimension of the reference array, repre-
senting the tickmarks along that dimension. Each integer vector must be sorted
in ascending order. NAs or negative values are not allowed.

x An ArrayGrid object.

ratio An integer vector specifying the ratio of the downsampling along each dimen-
sion. Can be of length 1, in which case the same ratio is used along all the
dimensions.

Details

RegularArrayGrid and ArbitraryArrayGrid are concrete subclasses of ArrayGrid, which itself is a
virtual class.

Note that an ArrayGrid or ArrayViewport object doesn’t store any array data, only the geometry
of the grid or viewport. This makes these objects extremely light-weight, even for grids made of
millions of blocks.
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Value

For RegularArrayGrid(), a RegularArrayGrid instance.

For ArbitraryArrayGrid(), an ArbitraryArrayGrid instance.

For downsample(), an ArrayGrid object on the same reference array than x.

See Also

• read_block to read a block of data from an array-like object.

• blockApply and family, in the DelayedArray package, for convenient block processing of an
array-like object.

• mapToGrid for mapping reference array positions to grid positions and vice-versa.

• array and matrix objects in base R.

Examples

## ---------------------------------------------------------------------
## A. ArrayGrid OBJECTS
## ---------------------------------------------------------------------

## Create a regularly-spaced grid on top of a 3700 x 100 x 33 array:
grid1 <- RegularArrayGrid(c(3700, 100, 33), c(250, 100, 10))

## Dimensions of the reference array:
refdim(grid1)

## Number of grid elements along each dimension of the reference array:
dim(grid1)

## Total number of grid elements:
length(grid1)

## First element in the grid:
grid1[[1L]] # same as grid1[[1L, 1L, 1L]]

## Last element in the grid:
grid1[[length(grid1)]] # same as grid1[[15L, 1L, 4L]]

## Dimensions of the grid elements:
dims(grid1) # one row per grid element

## Lengths of the grid elements:
lengths(grid1) # same as rowProds(dims(grid1))
stopifnot(sum(lengths(grid1)) == prod(refdim(grid1)))

maxlength(grid1) # does not need to compute lengths(grid1)) first
# so is more efficient than max(lengths(grid1))

stopifnot(maxlength(grid1) == max(lengths(grid1)))

## Create an arbitrary-spaced grid on top of a 15 x 9 matrix:
grid2 <- ArbitraryArrayGrid(list(c(2L, 7:10, 13L, 15L), c(5:6, 6L, 9L)))
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refdim(grid2)
dim(grid2)
length(grid2)
grid2[[1L]] # same as grid2[[1L, 1L]]
grid2[[length(grid2)]] # same as grid2[[15L, 9L]]

dims(grid2)
lengths(grid2)
array(lengths(grid2), dim(grid2)) # display the grid element lengths in

# an array of same shape as grid2

stopifnot(sum(lengths(grid2)) == prod(refdim(grid2)))

maxlength(grid2) # does not need to compute lengths(grid2)) first
# so is more efficient than max(lengths(grid2))

stopifnot(maxlength(grid2) == max(lengths(grid2)))

## Max (i.e. highest) resolution grid:
Hgrid <- RegularArrayGrid(6:4, c(1, 1, 1))
Hgrid
dim(Hgrid) # same as refdim(Hgrid)
stopifnot(identical(dim(Hgrid), refdim(Hgrid)))
stopifnot(all(lengths(Hgrid) == 1))

## Min (i.e. lowest) resolution grid:
Lgrid <- RegularArrayGrid(6:4, 6:4)
Lgrid
stopifnot(all(dim(Lgrid) == 1))
stopifnot(identical(dim(Lgrid[[1L]]), refdim(Lgrid)))
stopifnot(identical(dims(Lgrid), matrix(refdim(Lgrid), nrow=1)))

## ---------------------------------------------------------------------
## B. ArrayViewport OBJECTS
## ---------------------------------------------------------------------

## Grid elements are ArrayViewport objects:
grid1[[1L]]
stopifnot(is(grid1[[1L]], "ArrayViewport"))
grid1[[2L]]
grid1[[2L, 1L, 1L]]
grid1[[15L, 1L, 4L]]

## Construction of a standalong ArrayViewport object:
m0 <- matrix(1:30, ncol=5)
block_dim <- c(4, 3)
viewport1 <- ArrayViewport(dim(m0), IRanges(c(3, 2), width=block_dim))
viewport1

dim(viewport1) # 'block_dim'
length(viewport1) # number of array elements in the viewport
ranges(viewport1)
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## ---------------------------------------------------------------------
## C. GRIDS CAN BE TRANSPOSED
## ---------------------------------------------------------------------

tgrid2 <- t(grid2)
dim(tgrid2)
refdim(tgrid2)

## Use aperm() if the grid has more than 2 dimensions:
tgrid1 <- aperm(grid1)
dim(tgrid1)
refdim(tgrid1)

aperm(grid1, c(3, 1, 2))
aperm(grid1, c(1, 3, 2))
aperm(grid1, c(3, 1)) # some dimensions can be dropped
aperm(grid1, c(3, 2, 3)) # and some can be repeated

## ---------------------------------------------------------------------
## D. DOWNSAMPLING AN ArrayGrid OBJECT
## ---------------------------------------------------------------------
## The elements (ArrayViewport) of an ArrayGrid object can be replaced
## with bigger elements obtained by merging adjacent elements. How many
## adjacent elements to merge along each dimension is specified via the
## 'ratio' vector (one integer per dimension). We call this operation
## "downsampling. It can be seen as reducing the "resolution" of a grid
## by the specified ratio (if we think of the grid elements as pixels).
downsample(grid2, 2)
downsample(grid2, 3)
downsample(grid2, 4)

## Downsampling preserves the dimensions of the reference array:
stopifnot(identical(refdim(downsample(grid2, 2)), refdim(grid2)))
stopifnot(identical(refdim(downsample(grid2, 3)), refdim(grid2)))
stopifnot(identical(refdim(downsample(grid2, 4)), refdim(grid2)))

## A big enough ratio will eventually produce the coarsest possible grid
## i.e. a grid with a single grid element covering the entire reference
## array:
grid3 <- downsample(grid2, 7)
length(grid3)
grid3[[1L]]
stopifnot(identical(dim(grid3[[1L]]), refdim(grid3)))

## Downsampling by a ratio of 1 is a no-op:
stopifnot(identical(downsample(grid2, 1), grid2))

## Using one ratio per dimension:
downsample(grid2, c(2, 1))

## Downsample a max resolution grid:
refdim <- c(45, 16, 20)
grid4 <- RegularArrayGrid(refdim, c(1, 1, 1))
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ratio <- c(6, 1, 3)
stopifnot(identical(

downsample(grid4, ratio),
RegularArrayGrid(refdim, ratio)

))

bind-arrays Combine multidimensional array-like objects

Description

Bind multidimensional array-like objects along any dimension.

NOTE: This man page is for the abind S4 generic function defined in the S4Arrays package. See
?abind::abind for the default method (defined in the abind package). Bioconductor packages can
define specific methods for objects not supported by the default method.

Usage

## Bind array-like objects along any dimension:
abind(..., along=NULL, rev.along=NULL)

## Bind array-like objects along their first or second dimension:
arbind(...)
acbind(...)

Arguments

... The array-like objects to bind.
along, rev.along

See ?abind::abind for a description of these arguments.

Value

An array-like object, typically of the same class as the input objects if they all have the same class.

See Also

• abind::abind in the abind package for the default abind method.

• rbind and cbind in the base package for the corresponding operations on matrix-like objects.

Examples

a1 <- array(1:60, c(3, 5, 4),
dimnames=list(NULL, paste0("A1y", 1:5), NULL))

a2 <- array(101:240, c(7, 5, 4),
dimnames=list(paste0("A2x", 1:7), paste0("A2y", 1:5), NULL))

a3 <- array(10001:10100, c(5, 5, 4),
dimnames=list(paste0("A3x", 1:5), NULL, paste0("A3z", 1:4)))
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abind(a1, a2, a3, along=1) # same as 'arbind(a1, a2, a3)'

m2 <- matrix(1:35, nrow=7)
abind(m2, a2, along=3)
abind(a2, m2, along=3)

abind(m2, m2+0.5, rev.along=0) # same as 'abind(m2, m2+0.5, along=3)'

is_sparse Check for sparse representation

Description

is_sparse indicates whether an object (typically array-like) uses a sparse representation of the data
or not.

Note that this is about data representation and not about the data itself. For example, is_sparse()
always returns FALSE on an ordinary matrix, even if the matrix contains 99% zeros, because the data
in such a matrix is always stored in a dense form. OTOH is_sparse() always returns TRUE on a
SparseArray derivative from the SparseArray package, or on a dgCMatrix object from the Matrix
package, even if the data contains no zeros, because these objects use a sparse representation of the
data.

Usage

is_sparse(x)

Arguments

x Any object, but will typically be an array-like object.
Examples of array-like objects: ordinary arrays, SparseArray objects from the
SparseArray package, dgCMatrix objects from the Matrix package, DelayedAr-
ray objects from the DelayedArray package, or any object with an array seman-
tic (i.e. an object for which dim(x) is not NULL).

Value

TRUE or FALSE

See Also

• read_block to read a block of data from an array-like object.

• array and matrix objects in base R.

• dgCMatrix objects implemented in the Matrix package.
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Examples

m <- matrix(0L, nrow=50, ncol=20)
stopifnot(identical(is_sparse(m), FALSE))

dgc <- as(m + runif(1000), "dgCMatrix")
stopifnot(identical(is_sparse(dgc), TRUE))

read_block Read array blocks

Description

Use read_block to read a block of data from an array-like object.

Note that this function is typically used in the context of block processing of on-disk objects (e.g.
DelayedArray objects), often in combination with write_block.

Usage

read_block(x, viewport, as.sparse=NA)

## Internal generic function used by read_block() when is_sparse(x)
## is FALSE:
read_block_as_dense(x, viewport)

Arguments

x An array-like object.
This can be an ordinary array, a SparseArray object from the SparseArray pack-
age, a dgCMatrix object from the Matrix package, a DelayedArray object from
the DelayedArray package, or any object with an array semantic (i.e. an object
for which dim(x) is not NULL).

viewport An ArrayViewport object compatible with x, that is, such that refdim(viewport)
is identical to dim(x).

as.sparse Can be FALSE, TRUE, or NA.
If FALSE, the block is returned as an ordinary array (a.k.a. dense array).
If TRUE, it’s returned as a SparseArray object.
If NA (the default), the block is returned as an ordinary array if is_sparse(x) is
FALSE and as a SparseArray object otherwise. In other words, using as.sparse=NA
is equivalent to using as.sparse=is_sparse(x). This preserves sparsity and
is the most efficient way to read a block.
Note that when returned as a 2D SparseArray object with numeric or logical
data, a block can easily and efficiently be coerced to a sparseMatrix derivative
from the Matrix package with as(block, "sparseMatrix"). This will return a
dgCMatrix object if type(block) is "double" or "integer", and a lgCMatrix
object if it’s "logical".
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Details

read_block() delegates to 2 internal generic functions for reading a block:

• read_block_as_dense: used when is_sparse(x) is FALSE.

• read_block_as_sparse (defined in the SparseArray package): used when is_sparse(x)
is TRUE.

Note that these 2 internal generic functions are not meant to be called directly by the end user. The
end user should always call the higher-level user-facing read_block() function instead.

Value

A block of data. More precisely, the data from x that belongs to the block delimited by the specified
viewport.

The block of data is returned either as an ordinary (dense) array or as a SparseArray object from the
SparseArray package.

Note that the returned block of data is guaranteed to have the same type as x and the same di-
mensions as the viewport. More formally, if block is the value returned by read_block(x,
viewport), then:

identical(type(block), type(x))

and

identical(dim(block), dim(viewport))

are always TRUE.

See Also

• ArrayGrid for ArrayGrid and ArrayViewport objects.

• is_sparse to check whether an object uses a sparse representation of the data or not.

• SparseArray objects implemented in the SparseArray package.

• S4Arrays::type to get the type of the elements of an array-like object.

• The read_block_as_sparse internal generic function defined in the SparseArray package
and used by read_block() when is_sparse(x) is TRUE.

• write_block to write a block of data to an array-like object.

• blockApply and family, in the DelayedArray package, for convenient block processing of an
array-like object.

• dgCMatrix and lgCMatrix objects implemented in the Matrix package.

• DelayedArray objects implemented in the DelayedArray package.

• array and matrix objects in base R.
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Examples

## Please note that, although educative, the examples below are somewhat
## artificial and do not illustrate real-world usage of read_block().
## See '?RealizationSink' in the DelayedArray package for more realistic
## read_block/write_block examples.

## ---------------------------------------------------------------------
## BASIC EXAMPLE 1: READ A BLOCK FROM AN ORDINARY MATRIX (DENSE)
## ---------------------------------------------------------------------
m1 <- matrix(1:30, ncol=5)
m1

## Define the viewport on 'm1' to read the data from:
block1_dim <- c(4, 3)
viewport1 <- ArrayViewport(dim(m1), IRanges(c(3, 2), width=block1_dim))
viewport1

## Read the block:
block1 <- read_block(m1, viewport1) # same as m1[3:6, 2:4, drop=FALSE]
block1

## Use 'as.sparse=TRUE' to read the block as sparse object:
block1b <- read_block(m1, viewport1, as.sparse=TRUE)
block1b
is_sparse(block1b) # TRUE
class(block1b) # an SVT_SparseArray object

## Sanity checks:
stopifnot(identical(type(m1), type(block1)))
stopifnot(identical(dim(viewport1), dim(block1)))
stopifnot(identical(m1[3:6, 2:4, drop=FALSE], block1))
stopifnot(is(block1b, "SparseArray"))
stopifnot(identical(type(m1), type(block1b)))
stopifnot(identical(dim(viewport1), dim(block1b)))
stopifnot(identical(block1, as.array(block1b)))

## ---------------------------------------------------------------------
## BASIC EXAMPLE 2: READ A BLOCK FROM A SPARSE MATRIX
## ---------------------------------------------------------------------
m2 <- rsparsematrix(12, 20, density=0.2,

rand.x=function(n) sample(25, n, replace=TRUE))
m2
is_sparse(m2) # TRUE

## Define the viewport on 'm2' to read the data from:
block2_dim <- c(2, 20)
viewport2 <- ArrayViewport(dim(m2), IRanges(c(1, 1), width=block2_dim))
viewport2

## By default, read_block() preserves sparsity:
block2 <- read_block(m2, viewport2)
block2
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is_sparse(block2) # TRUE
class(block2) # an SVT_SparseArray object

## Use 'as.sparse=FALSE' to force read_block() to return an ordinary
## matrix or array:
block2b <- read_block(m2, viewport2, as.sparse=FALSE)
block2b
as(block2b, "sparseMatrix")

## Sanity checks:
stopifnot(is(block2, "SparseArray"))
stopifnot(identical(type(m2), type(block2)))
stopifnot(identical(dim(viewport2), dim(block2)))
stopifnot(identical(type(m2), type(block2b)))
stopifnot(identical(dim(viewport2), dim(block2b)))
stopifnot(identical(block2b, as.array(block2)))

## ---------------------------------------------------------------------
## BASIC EXAMPLE 3: READ A BLOCK FROM A 3D ARRAY
## ---------------------------------------------------------------------
a3 <- array(1:60, dim=5:3)

## Define the viewport on 'a3' to read the data from:
block3_dim <- c(2, 4, 1)
viewport3 <- ArrayViewport(dim(a3), IRanges(c(1, 1, 3), width=block3_dim))
viewport3

## Read the block:
block3 <- read_block(a3, viewport3) # same as a3[1:2, 1:4, 3, drop=FALSE]
block3

## Note that unlike [, read_block() never drops dimensions.

## Sanity checks:
stopifnot(identical(type(a3), type(block3)))
stopifnot(identical(dim(viewport3), dim(block3)))
stopifnot(identical(a3[1:2, 1:4, 3, drop=FALSE], block3))

## ---------------------------------------------------------------------
## BASIC EXAMPLE 4: READ AND PROCESS BLOCKS DEFINED BY A GRID
## ---------------------------------------------------------------------
a4 <- array(runif(120), dim=6:4)

## Define a grid of 2x3x2 blocks on 'a4':
grid4 <- RegularArrayGrid(dim(a4), spacings=c(2,3,2))
grid4
nblock <- length(grid4) # number of blocks

## Walk on the grid and print the corresponding blocks:
for (bid in seq_len(nblock)) {

viewport <- grid4[[bid]]
block <- read_block(a4, viewport)
cat("====== Block ", bid, "/", nblock, " ======\n", sep="")
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print(block)
}

## Walk on the grid and compute the sum of each block:
block_sums <- sapply(grid4,

function(viewport) sum(read_block(a4, viewport))
)
block_sums

## Sanity checks:
stopifnot(identical(length(block_sums), nblock))
stopifnot(all.equal(sum(block_sums), sum(a4)))

## ---------------------------------------------------------------------
## THE read_block/write_block COMBO
## ---------------------------------------------------------------------
## See '?write_block' for examples that use the read_block/write_block
## combo.

rowsum Compute column/row sums of a matrix-like object, for groups of
rows/columns

Description

rowsum() computes column sums across rows of a numeric matrix-like object for each level of a
grouping variable.

colsum() computes row sums across columns of a numeric matrix-like object for each level of a
grouping variable.

NOTE: This man page is for the rowsum and colsum S4 generic functions defined in the S4Arrays
package. See ?base::rowsum for the default rowsum() method (defined in the base package).
Bioconductor packages can define specific methods for objects (typically matrix-like) not supported
by the default methods.

Usage

rowsum(x, group, reorder=TRUE, ...)

colsum(x, group, reorder=TRUE, ...)

Arguments

x A numeric matrix-like object.

group, reorder, ...
See ?base::rowsum for a description of these arguments.
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Value

See ?base::rowsum for the value returned by the default method.

The default colsum() method simply does t(rowsum(t(x), group, reorder=reorder, ...)).

Specific methods defined in Bioconductor packages should behave as consistently as possible with
the default methods.

See Also

• base::rowsum for the default rowsum method.

• showMethods for displaying a summary of the methods defined for a given generic function.

• selectMethod for getting the definition of a specific method.

• rowsum,DelayedMatrix-method in the DelayedArray package for an example of a specific
rowsum method (defined for DelayedMatrix objects).

Examples

rowsum # note the dispatch on the 'x' arg only
showMethods("rowsum")
selectMethod("rowsum", "ANY") # the default rowsum() method

colsum # note the dispatch on the 'x' arg only
showMethods("colsum")
selectMethod("colsum", "ANY") # the default colsum() method
selectMethod("colsum", "matrix") # colsum() method for ordinary matrices

type Get the type of the elements of an array-like object

Description

The S4Arrays package defines a couple of type() methods to get the type of the elements of a
matrix-like or array-like object.

Usage

## S4 method for signature 'ANY'
type(x)

## S4 method for signature 'DataFrame'
type(x)
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Arguments

x For the default type() method: An array-like object. This can be an ordinary
array, a SparseArray object from the SparseArray package, a dgCMatrix ob-
ject from the Matrix package, a DelayedArray object from the DelayedArray
package, or any object with an array semantic (i.e. an object for which dim(x)
is not NULL).
For the method for DataFrame objects: A DataFrame derivative for which as.data.frame(x)
preserves the number of columns. See below for more information.

Details

Note that for an ordinary matrix or array x, type(x) is the same as typeof(x).

On an array-like object x that is not an ordinary array, type(x) is semantically equivalent to
typeof(as.array(x)). However, the actual implementation is careful to avoid turning the full
array-like object x into an ordinary array, as this would tend to be very inefficient in general. For
example, doing so on a big DelayedArray object could easily eat all the memory available on the
machine.

On a DataFrame object, type(x) only works if as.data.frame(x) preserves the number of columns,
in which case it is semantically equivalent to typeof(as.matrix(as.data.frame(x))). Here too,
the actual implementation is careful to avoid turning the full object into a data frame, then into a
matrix, for efficiency reasons.

Value

A single string indicating the type of the array elements in x.

See Also

• The type generic function defined in the BiocGenerics package.

• SparseArray objects implemented in the SparseArray package.

• DelayedArray objects implemented in the DelayedArray package.

• DataFrame objects implemented in the S4Vectors package.

Examples

m <- matrix(rpois(54e6, lambda=0.4), ncol=1200)
type(m) # integer

x1 <- as(m, "dgCMatrix")
type(x1) # double

library(SparseArray)
x2 <- SparseArray(m)
type(x2) # integer
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write_block Write array blocks

Description

Use write_block to write a block of data to an array-like object.

Note that this function is typically used in the context of block processing of on-disk objects (e.g.
DelayedArray objects), often in combination with read_block.

Usage

write_block(sink, viewport, block)

Arguments

sink A **writable** array-like object. This is typically a RealizationSink derivative
(RealizationSink is a virtual class defined in the DelayedArray package), but
not necessarily. See ?RealizationSink in the DelayedArray package for more
information about RealizationSink objects.
Although write_block() will typically be used on a RealizationSink deriva-
tive, it can also be used on an ordinary array or other in-memory array-like
object that supports subassignment (`[<-`), like a SparseArray object from the
SparseArray package, or a dgCMatrix object from the Matrix package.

viewport An ArrayViewport object compatible with sink, that is, such that refdim(viewport)
is identical to dim(sink).

block An array-like object of the same dimensions as viewport.

Value

The modified array-like object sink.

See Also

• ArrayGrid for ArrayGrid and ArrayViewport objects.

• SparseArray objects implemented in the SparseArray package.

• read_block to read a block of data from an array-like object.

• blockApply and family, in the DelayedArray package, for convenient block processing of an
array-like object.

• RealizationSink objects implemented in the DelayedArray package for more realistic write_block
examples.

• array and matrix objects in base R.
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Examples

## Please note that, although educative, the examples below are somewhat
## artificial and do not illustrate real-world usage of write_block().
## See '?RealizationSink' in the DelayedArray package for more realistic
## read_block/write_block examples.

## ---------------------------------------------------------------------
## BASIC EXAMPLE 1: WRITE A BLOCK TO AN ORDINARY MATRIX (DENSE)
## ---------------------------------------------------------------------
m1 <- matrix(1:30, ncol=5)
m1

## Define the viewport on 'm1' to write the data to:
block1_dim <- c(4, 3)
viewport1 <- ArrayViewport(dim(m1), IRanges(c(3, 2), width=block1_dim))
viewport1

## Data to write:
block1 <- read_block(m1, viewport1) + 1000L

## Write the block:
m1A <- write_block(m1, viewport1, block1)
m1A

## Sanity checks:
stopifnot(identical(`[<-`(m1, 3:6, 2:4, value=block1), m1A))
m1B <- write_block(m1, viewport1, as(block1, "dgCMatrix"))
stopifnot(identical(m1A, m1B))

## ---------------------------------------------------------------------
## BASIC EXAMPLE 2: WRITE A BLOCK TO A SPARSE MATRIX
## ---------------------------------------------------------------------
m2 <- rsparsematrix(12, 20, density=0.2,

rand.x=function(n) sample(25, n, replace=TRUE))
m2

## Define the viewport on 'm2' to write the data to:
block2_dim <- c(2, 20)
viewport2 <- ArrayViewport(dim(m2), IRanges(c(1, 1), width=block2_dim))
viewport2

## Data to write:
block2 <- matrix(1001:1040, nrow=2)

## Write the block:
m2A <- write_block(m2, viewport2, block2)
m2A

## Sanity checks:
stopifnot(identical(`[<-`(m2, 1:2, , value=block2), m2A))
m2B <- write_block(m2, viewport2, as(block2, "dgCMatrix"))
stopifnot(identical(m2A, m2B))
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## ---------------------------------------------------------------------
## BASIC EXAMPLE 3: WRITE A BLOCK TO A 3D ARRAY
## ---------------------------------------------------------------------
a3 <- array(1:60, dim=5:3)

## Define the viewport on 'a3' to write the data to:
block3_dim <- c(2, 4, 1)
viewport3 <- ArrayViewport(dim(a3), IRanges(c(1, 1, 3), width=block3_dim))
viewport3

## Data to write:
block3 <- array(-(1:8), dim=block3_dim)

## Write the block:
a3A <- write_block(a3, viewport3, block3)
a3A

## Sanity checks:
stopifnot(identical(`[<-`(a3, 1:2, , 3, value=block3), a3A))
a3B <- write_block(a3, viewport3, as(block3, "SparseArray"))
stopifnot(identical(a3A, a3B))

## ---------------------------------------------------------------------
## BASIC EXAMPLE 4: WRITE BLOCKS DEFINED BY A GRID
## ---------------------------------------------------------------------
a4 <- array(NA_real_, dim=6:4)

## Define a grid of 2x3x2 blocks on 'a4':
grid4 <- RegularArrayGrid(dim(a4), spacings=c(2,3,2))
grid4
nblock <- length(grid4) # number of blocks

## Walk on the grid and write blocks of random data:
for (bid in seq_len(nblock)) {

viewport <- grid4[[bid]]
block <- array(runif(length(viewport)), dim=dim(viewport))
cat("====== Write block ", bid, "/", nblock, " ======\n", sep="")
a4 <- write_block(a4, viewport, block)

}
a4

## ---------------------------------------------------------------------
## BASIC EXAMPLE 5: READ, PROCESS, AND WRITE BLOCKS DEFINED BY TWO GRIDS
## ---------------------------------------------------------------------
## Say we have a 3D array and want to collapse its 3rd dimension by
## summing the array elements that are stacked vertically, that is, we
## want to compute the matrix 'm' obtained by doing 'sum(a[i, j, ])' for
## all valid i and j. There are several ways to do this.

## 1. Here is a solution based on apply():

collapse_3rd_dim <- function(a) apply(a, MARGIN=1:2, sum)



write_block 27

## 2. Here is a slightly more efficient solution:

collapse_3rd_dim <- function(a) {
m <- matrix(0, nrow=nrow(a), ncol=ncol(a))
for (z in seq_len(dim(a)[[3]]))

m <- m + a[ , , z]
m

}

## 3. And here is a block-processing solution that involves two grids,
## one for the sink, and one for the input:

a5 <- array(runif(8000), dim=c(25, 40, 8)) # input
m <- array(NA_real_, dim=dim(a5)[1:2]) # sink

## Since we're going to walk on the two grids simultaneously, read a
## block from 'a5' and write it to 'm', we need to make sure that we
## define grids that are "aligned". More precisely, the two grids must
## have the same number of viewports, and the viewports in one must
## correspond to the viewports in the other one:
m_grid <- RegularArrayGrid(dim(m), spacings=c(10, 10))
a5_grid <- RegularArrayGrid(dim(a5), spacings=c(10, 10, dim(a5)[[3]]))

## Let's check that our two grids are actually "aligned":
stopifnot(identical(length(m_grid), length(a5_grid)))
stopifnot(identical(dims(m_grid), dims(a5_grid)[ , 1:2, drop=FALSE]))

## Walk on the two grids simultaneously, and read/collapse/write blocks:
for (bid in seq_along(m_grid)) {

## Read block from 'a5'.
a5_viewport <- a5_grid[[bid]]
block <- read_block(a5, a5_viewport)
## Collapse it.
block <- collapse_3rd_dim(block)
## Write the collapsed block to 'm'.
m_viewport <- m_grid[[bid]]
m <- write_block(m, m_viewport, block)

}

## Sanity checks:
stopifnot(identical(dim(a5)[1:2], dim(m)))
stopifnot(identical(sum(a5), sum(m)))
stopifnot(identical(collapse_3rd_dim(a5), m))

## See '?RealizationSink' in the DelayedArray package for a more
## realistic "array collapse" example where the blocks are written
## to a RealizationSink object.
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read_block_as_dense,ANY-method
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read_block_as_sparse, 18



30 INDEX

RealizationSink, 24
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refdim,ArbitraryArrayGrid-method
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refdim,ArrayViewport-method

(ArrayGrid-class), 11
refdim,DummyArrayGrid-method

(ArrayGrid-class), 11
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RegularArrayGrid (ArrayGrid-class), 11
RegularArrayGrid-class
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rowsum, 21, 21, 22
rowsum,DelayedMatrix-method, 22

SafeArrayViewport (ArrayGrid-class), 11
SafeArrayViewport-class

(ArrayGrid-class), 11
selectMethod, 22
show,ArrayGrid-method

(ArrayGrid-class), 11
show,ArrayViewport-method

(ArrayGrid-class), 11
showAsCell,Array-method (Array-class),
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showMethods, 22
SparseArray, 6, 10, 16–18, 23, 24
sparseMatrix, 17
start,ArrayViewport-method

(ArrayGrid-class), 11

t,Array-method (Array-class), 10
t.Array (Array-class), 10
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type,ANY-method (type), 22
type,DataFrame-method (type), 22

width,ArrayViewport-method
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write_block, 17, 18, 24
write_block,ANY-method (write_block), 24
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